Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℕ ) |
2 |
|
iccpart |
⊢ ( ( 𝑀 + 1 ) ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
4 |
|
simpl |
⊢ ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ) |
5 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
6 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
|
fzss2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 0 ... 𝑀 ) ⊆ ( 0 ... ( 𝑀 + 1 ) ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 0 ... 𝑀 ) ⊆ ( 0 ... ( 𝑀 + 1 ) ) ) |
12 |
|
elmapssres |
⊢ ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ( 0 ... 𝑀 ) ⊆ ( 0 ... ( 𝑀 + 1 ) ) ) → ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ) |
13 |
4 11 12
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ) |
14 |
|
fzoss2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 0 ..^ 𝑀 ) ⊆ ( 0 ..^ ( 𝑀 + 1 ) ) ) |
15 |
9 14
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 0 ..^ 𝑀 ) ⊆ ( 0 ..^ ( 𝑀 + 1 ) ) ) |
16 |
|
ssralv |
⊢ ( ( 0 ..^ 𝑀 ) ⊆ ( 0 ..^ ( 𝑀 + 1 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
17 |
15 16
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
18 |
17
|
adantld |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
19 |
18
|
imp |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
20 |
|
fzossfz |
⊢ ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
21 |
20
|
a1i |
⊢ ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) → ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) ) |
22 |
21
|
sselda |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
23 |
|
fvres |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) = ( 𝑃 ‘ 𝑖 ) ) |
24 |
23
|
eqcomd |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 𝑖 ) = ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) ) |
25 |
22 24
|
syl |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) = ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
27 |
|
elfzouz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
29 |
|
fzofzp1b |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
30 |
28 29
|
syl |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
31 |
26 30
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
32 |
|
fvres |
⊢ ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
33 |
31 32
|
syl |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
34 |
33
|
eqcomd |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) |
35 |
25 34
|
breq12d |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ↔ ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) < ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) ) |
36 |
35
|
biimpd |
⊢ ( ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) < ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) ) |
37 |
36
|
ralimdva |
⊢ ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ 𝑀 ∈ ℕ ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) < ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) ) |
38 |
37
|
ex |
⊢ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) → ( 𝑀 ∈ ℕ → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) < ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑀 ∈ ℕ → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) < ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) |
40 |
39
|
impcom |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) < ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) ) |
41 |
19 40
|
mpd |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) < ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) |
42 |
|
iccpart |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( RePart ‘ 𝑀 ) ↔ ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) < ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( RePart ‘ 𝑀 ) ↔ ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ 𝑖 ) < ( ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) |
44 |
13 41 43
|
mpbir2and |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( RePart ‘ 𝑀 ) ) |
45 |
44
|
ex |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... ( 𝑀 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑀 + 1 ) ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( RePart ‘ 𝑀 ) ) ) |
46 |
3 45
|
sylbid |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ ( 𝑀 + 1 ) ) → ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( RePart ‘ 𝑀 ) ) ) |
47 |
46
|
imp |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ ( 𝑀 + 1 ) ) ) → ( 𝑃 ↾ ( 0 ... 𝑀 ) ) ∈ ( RePart ‘ 𝑀 ) ) |