Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
|
iccpart |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
5 |
|
elmapfn |
⊢ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) → 𝑃 Fn ( 0 ... 𝑀 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → 𝑃 Fn ( 0 ... 𝑀 ) ) |
7 |
4 6
|
syl6bi |
⊢ ( 𝜑 → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) → 𝑃 Fn ( 0 ... 𝑀 ) ) ) |
8 |
2 7
|
mpd |
⊢ ( 𝜑 → 𝑃 Fn ( 0 ... 𝑀 ) ) |
9 |
|
fvelrnb |
⊢ ( 𝑃 Fn ( 0 ... 𝑀 ) → ( 𝑝 ∈ ran 𝑃 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑖 ) = 𝑝 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝑝 ∈ ran 𝑃 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑖 ) = 𝑝 ) ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ℕ ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
14 |
11 12 13
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ) |
15 |
1 2
|
iccpartgel |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑘 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑖 ) ) |
17 |
16
|
breq2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
18 |
17
|
rspcva |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑘 ) ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) |
19 |
18
|
expcom |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑘 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
20 |
15 19
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
21 |
20
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) |
22 |
1 2
|
iccpartleu |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑘 ) ≤ ( 𝑃 ‘ 𝑀 ) ) |
23 |
16
|
breq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 𝑘 ) ≤ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
24 |
23
|
rspcva |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑘 ) ≤ ( 𝑃 ‘ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) |
25 |
24
|
expcom |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑘 ) ≤ ( 𝑃 ‘ 𝑀 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
26 |
22 25
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
27 |
26
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) |
28 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
29 |
|
0elfz |
⊢ ( 𝑀 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑀 ) ) |
30 |
1 28 29
|
3syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
31 |
1 2 30
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) ∈ ℝ* ) |
32 |
|
nn0fz0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ 𝑀 ∈ ( 0 ... 𝑀 ) ) |
33 |
28 32
|
sylib |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
34 |
1 33
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
35 |
1 2 34
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) |
36 |
31 35
|
jca |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑃 ‘ 0 ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) ) |
38 |
|
elicc1 |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) → ( ( 𝑃 ‘ 𝑖 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ↔ ( ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ∧ ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑃 ‘ 𝑖 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ↔ ( ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ∧ ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) ) |
40 |
14 21 27 39
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) |
41 |
|
eleq1 |
⊢ ( ( 𝑃 ‘ 𝑖 ) = 𝑝 → ( ( 𝑃 ‘ 𝑖 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ↔ 𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) |
42 |
40 41
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑃 ‘ 𝑖 ) = 𝑝 → 𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) |
43 |
42
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑖 ) = 𝑝 → 𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) |
44 |
10 43
|
sylbid |
⊢ ( 𝜑 → ( 𝑝 ∈ ran 𝑃 → 𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) |
45 |
44
|
ssrdv |
⊢ ( 𝜑 → ran 𝑃 ⊆ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) |