Metamath Proof Explorer


Theorem iccpartrn

Description: If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m ( 𝜑𝑀 ∈ ℕ )
iccpartgtprec.p ( 𝜑𝑃 ∈ ( RePart ‘ 𝑀 ) )
Assertion iccpartrn ( 𝜑 → ran 𝑃 ⊆ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m ( 𝜑𝑀 ∈ ℕ )
2 iccpartgtprec.p ( 𝜑𝑃 ∈ ( RePart ‘ 𝑀 ) )
3 iccpart ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ*m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) )
4 1 3 syl ( 𝜑 → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ*m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) )
5 elmapfn ( 𝑃 ∈ ( ℝ*m ( 0 ... 𝑀 ) ) → 𝑃 Fn ( 0 ... 𝑀 ) )
6 5 adantr ( ( 𝑃 ∈ ( ℝ*m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → 𝑃 Fn ( 0 ... 𝑀 ) )
7 4 6 syl6bi ( 𝜑 → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) → 𝑃 Fn ( 0 ... 𝑀 ) ) )
8 2 7 mpd ( 𝜑𝑃 Fn ( 0 ... 𝑀 ) )
9 fvelrnb ( 𝑃 Fn ( 0 ... 𝑀 ) → ( 𝑝 ∈ ran 𝑃 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃𝑖 ) = 𝑝 ) )
10 8 9 syl ( 𝜑 → ( 𝑝 ∈ ran 𝑃 ↔ ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃𝑖 ) = 𝑝 ) )
11 1 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ℕ )
12 2 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) )
13 simpr ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
14 11 12 13 iccpartxr ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃𝑖 ) ∈ ℝ* )
15 1 2 iccpartgel ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑘 ) )
16 fveq2 ( 𝑘 = 𝑖 → ( 𝑃𝑘 ) = ( 𝑃𝑖 ) )
17 16 breq2d ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑘 ) ↔ ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ) )
18 17 rspcva ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑘 ) ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) )
19 18 expcom ( ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑘 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ) )
20 15 19 syl ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ) )
21 20 imp ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) )
22 1 2 iccpartleu ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃𝑘 ) ≤ ( 𝑃𝑀 ) )
23 16 breq1d ( 𝑘 = 𝑖 → ( ( 𝑃𝑘 ) ≤ ( 𝑃𝑀 ) ↔ ( 𝑃𝑖 ) ≤ ( 𝑃𝑀 ) ) )
24 23 rspcva ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃𝑘 ) ≤ ( 𝑃𝑀 ) ) → ( 𝑃𝑖 ) ≤ ( 𝑃𝑀 ) )
25 24 expcom ( ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑃𝑘 ) ≤ ( 𝑃𝑀 ) → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃𝑖 ) ≤ ( 𝑃𝑀 ) ) )
26 22 25 syl ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃𝑖 ) ≤ ( 𝑃𝑀 ) ) )
27 26 imp ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃𝑖 ) ≤ ( 𝑃𝑀 ) )
28 nnnn0 ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 )
29 0elfz ( 𝑀 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑀 ) )
30 1 28 29 3syl ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) )
31 1 2 30 iccpartxr ( 𝜑 → ( 𝑃 ‘ 0 ) ∈ ℝ* )
32 nn0fz0 ( 𝑀 ∈ ℕ0𝑀 ∈ ( 0 ... 𝑀 ) )
33 28 32 sylib ( 𝑀 ∈ ℕ → 𝑀 ∈ ( 0 ... 𝑀 ) )
34 1 33 syl ( 𝜑𝑀 ∈ ( 0 ... 𝑀 ) )
35 1 2 34 iccpartxr ( 𝜑 → ( 𝑃𝑀 ) ∈ ℝ* )
36 31 35 jca ( 𝜑 → ( ( 𝑃 ‘ 0 ) ∈ ℝ* ∧ ( 𝑃𝑀 ) ∈ ℝ* ) )
37 36 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑃 ‘ 0 ) ∈ ℝ* ∧ ( 𝑃𝑀 ) ∈ ℝ* ) )
38 elicc1 ( ( ( 𝑃 ‘ 0 ) ∈ ℝ* ∧ ( 𝑃𝑀 ) ∈ ℝ* ) → ( ( 𝑃𝑖 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) ↔ ( ( 𝑃𝑖 ) ∈ ℝ* ∧ ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ∧ ( 𝑃𝑖 ) ≤ ( 𝑃𝑀 ) ) ) )
39 37 38 syl ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑃𝑖 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) ↔ ( ( 𝑃𝑖 ) ∈ ℝ* ∧ ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ∧ ( 𝑃𝑖 ) ≤ ( 𝑃𝑀 ) ) ) )
40 14 21 27 39 mpbir3and ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃𝑖 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) )
41 eleq1 ( ( 𝑃𝑖 ) = 𝑝 → ( ( 𝑃𝑖 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) ↔ 𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) ) )
42 40 41 syl5ibcom ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑃𝑖 ) = 𝑝𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) ) )
43 42 rexlimdva ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃𝑖 ) = 𝑝𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) ) )
44 10 43 sylbid ( 𝜑 → ( 𝑝 ∈ ran 𝑃𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) ) )
45 44 ssrdv ( 𝜑 → ran 𝑃 ⊆ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) )