Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
|
iccpartxr.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
4 |
|
iccpart |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
6 |
2 5
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
7 |
6
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ) |
8 |
|
elmapi |
⊢ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) → 𝑃 : ( 0 ... 𝑀 ) ⟶ ℝ* ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... 𝑀 ) ⟶ ℝ* ) |
10 |
9 3
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ) |