| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iccpnfhmeo.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							0xr | 
							⊢ 0  ∈  ℝ*  | 
						
						
							| 3 | 
							
								
							 | 
							pnfxr | 
							⊢ +∞  ∈  ℝ*  | 
						
						
							| 4 | 
							
								
							 | 
							0lepnf | 
							⊢ 0  ≤  +∞  | 
						
						
							| 5 | 
							
								
							 | 
							ubicc2 | 
							⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  0  ≤  +∞ )  →  +∞  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 6 | 
							
								2 3 4 5
							 | 
							mp3an | 
							⊢ +∞  ∈  ( 0 [,] +∞ )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑥  =  1 )  →  +∞  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							icossicc | 
							⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ )  | 
						
						
							| 9 | 
							
								
							 | 
							1xr | 
							⊢ 1  ∈  ℝ*  | 
						
						
							| 10 | 
							
								
							 | 
							0le1 | 
							⊢ 0  ≤  1  | 
						
						
							| 11 | 
							
								
							 | 
							snunico | 
							⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  0  ≤  1 )  →  ( ( 0 [,) 1 )  ∪  { 1 } )  =  ( 0 [,] 1 ) )  | 
						
						
							| 12 | 
							
								2 9 10 11
							 | 
							mp3an | 
							⊢ ( ( 0 [,) 1 )  ∪  { 1 } )  =  ( 0 [,] 1 )  | 
						
						
							| 13 | 
							
								12
							 | 
							eleq2i | 
							⊢ ( 𝑥  ∈  ( ( 0 [,) 1 )  ∪  { 1 } )  ↔  𝑥  ∈  ( 0 [,] 1 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑥  ∈  ( ( 0 [,) 1 )  ∪  { 1 } )  ↔  ( 𝑥  ∈  ( 0 [,) 1 )  ∨  𝑥  ∈  { 1 } ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							bitr3i | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↔  ( 𝑥  ∈  ( 0 [,) 1 )  ∨  𝑥  ∈  { 1 } ) )  | 
						
						
							| 16 | 
							
								
							 | 
							pm2.53 | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∨  𝑥  ∈  { 1 } )  →  ( ¬  𝑥  ∈  ( 0 [,) 1 )  →  𝑥  ∈  { 1 } ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							sylbi | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  ( ¬  𝑥  ∈  ( 0 [,) 1 )  →  𝑥  ∈  { 1 } ) )  | 
						
						
							| 18 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑥  ∈  { 1 }  →  𝑥  =  1 )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl6 | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  ( ¬  𝑥  ∈  ( 0 [,) 1 )  →  𝑥  =  1 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							con1d | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  ( ¬  𝑥  =  1  →  𝑥  ∈  ( 0 [,) 1 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imp | 
							⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  𝑥  ∈  ( 0 [,) 1 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							icopnfcnv | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑦  ∈  ( 0 [,) +∞ )  ↦  ( 𝑦  /  ( 1  +  𝑦 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							simpli | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  | 
						
						
							| 25 | 
							
								
							 | 
							f1of | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  →  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) ⟶ ( 0 [,) +∞ ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							ax-mp | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) ⟶ ( 0 [,) +∞ )  | 
						
						
							| 27 | 
							
								22
							 | 
							fmpt | 
							⊢ ( ∀ 𝑥  ∈  ( 0 [,) 1 ) ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ )  ↔  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) ⟶ ( 0 [,) +∞ ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							mpbir | 
							⊢ ∀ 𝑥  ∈  ( 0 [,) 1 ) ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ )  | 
						
						
							| 29 | 
							
								28
							 | 
							rspec | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ ) )  | 
						
						
							| 30 | 
							
								21 29
							 | 
							syl | 
							⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ ) )  | 
						
						
							| 31 | 
							
								8 30
							 | 
							sselid | 
							⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 32 | 
							
								7 31
							 | 
							ifclda | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑥  ∈  ( 0 [,] 1 ) )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 34 | 
							
								
							 | 
							1elunit | 
							⊢ 1  ∈  ( 0 [,] 1 )  | 
						
						
							| 35 | 
							
								34
							 | 
							a1i | 
							⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  𝑦  =  +∞ )  →  1  ∈  ( 0 [,] 1 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							icossicc | 
							⊢ ( 0 [,) 1 )  ⊆  ( 0 [,] 1 )  | 
						
						
							| 37 | 
							
								
							 | 
							snunico | 
							⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  0  ≤  +∞ )  →  ( ( 0 [,) +∞ )  ∪  { +∞ } )  =  ( 0 [,] +∞ ) )  | 
						
						
							| 38 | 
							
								2 3 4 37
							 | 
							mp3an | 
							⊢ ( ( 0 [,) +∞ )  ∪  { +∞ } )  =  ( 0 [,] +∞ )  | 
						
						
							| 39 | 
							
								38
							 | 
							eleq2i | 
							⊢ ( 𝑦  ∈  ( ( 0 [,) +∞ )  ∪  { +∞ } )  ↔  𝑦  ∈  ( 0 [,] +∞ ) )  | 
						
						
							| 40 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑦  ∈  ( ( 0 [,) +∞ )  ∪  { +∞ } )  ↔  ( 𝑦  ∈  ( 0 [,) +∞ )  ∨  𝑦  ∈  { +∞ } ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							bitr3i | 
							⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  ↔  ( 𝑦  ∈  ( 0 [,) +∞ )  ∨  𝑦  ∈  { +∞ } ) )  | 
						
						
							| 42 | 
							
								
							 | 
							pm2.53 | 
							⊢ ( ( 𝑦  ∈  ( 0 [,) +∞ )  ∨  𝑦  ∈  { +∞ } )  →  ( ¬  𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  ∈  { +∞ } ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							sylbi | 
							⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  ( ¬  𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  ∈  { +∞ } ) )  | 
						
						
							| 44 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑦  ∈  { +∞ }  →  𝑦  =  +∞ )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							syl6 | 
							⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  ( ¬  𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  =  +∞ ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							con1d | 
							⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  ( ¬  𝑦  =  +∞  →  𝑦  ∈  ( 0 [,) +∞ ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							imp | 
							⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  𝑦  ∈  ( 0 [,) +∞ ) )  | 
						
						
							| 48 | 
							
								
							 | 
							f1ocnv | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  →  ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) –1-1-onto→ ( 0 [,) 1 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							f1of | 
							⊢ ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) –1-1-onto→ ( 0 [,) 1 )  →  ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) ⟶ ( 0 [,) 1 ) )  | 
						
						
							| 50 | 
							
								24 48 49
							 | 
							mp2b | 
							⊢ ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) ⟶ ( 0 [,) 1 )  | 
						
						
							| 51 | 
							
								23
							 | 
							simpri | 
							⊢ ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑦  ∈  ( 0 [,) +∞ )  ↦  ( 𝑦  /  ( 1  +  𝑦 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							fmpt | 
							⊢ ( ∀ 𝑦  ∈  ( 0 [,) +∞ ) ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 )  ↔  ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) +∞ ) ⟶ ( 0 [,) 1 ) )  | 
						
						
							| 53 | 
							
								50 52
							 | 
							mpbir | 
							⊢ ∀ 𝑦  ∈  ( 0 [,) +∞ ) ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 )  | 
						
						
							| 54 | 
							
								53
							 | 
							rspec | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 ) )  | 
						
						
							| 55 | 
							
								47 54
							 | 
							syl | 
							⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 ) )  | 
						
						
							| 56 | 
							
								36 55
							 | 
							sselid | 
							⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,] 1 ) )  | 
						
						
							| 57 | 
							
								35 56
							 | 
							ifclda | 
							⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ∈  ( 0 [,] 1 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ∈  ( 0 [,] 1 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 1  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  →  ( 𝑥  =  1  ↔  𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							bibi1d | 
							⊢ ( 1  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  →  ( ( 𝑥  =  1  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  ↔  ( 𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( ( 𝑦  /  ( 1  +  𝑦 ) )  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							bibi1d | 
							⊢ ( ( 𝑦  /  ( 1  +  𝑦 ) )  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  →  ( ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  ↔  ( 𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  𝑦  =  +∞ )  | 
						
						
							| 64 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑥  =  1  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  +∞ )  | 
						
						
							| 65 | 
							
								64
							 | 
							eqeq2d | 
							⊢ ( 𝑥  =  1  →  ( 𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ↔  𝑦  =  +∞ ) )  | 
						
						
							| 66 | 
							
								63 65
							 | 
							syl5ibrcom | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑥  =  1  →  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							pnfnre | 
							⊢ +∞  ∉  ℝ  | 
						
						
							| 68 | 
							
								
							 | 
							neleq1 | 
							⊢ ( 𝑦  =  +∞  →  ( 𝑦  ∉  ℝ  ↔  +∞  ∉  ℝ ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantl | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑦  ∉  ℝ  ↔  +∞  ∉  ℝ ) )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							mpbiri | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  𝑦  ∉  ℝ )  | 
						
						
							| 71 | 
							
								
							 | 
							neleq1 | 
							⊢ ( 𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( 𝑦  ∉  ℝ  ↔  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∉  ℝ ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							syl5ibcom | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∉  ℝ ) )  | 
						
						
							| 73 | 
							
								
							 | 
							df-nel | 
							⊢ ( if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∉  ℝ  ↔  ¬  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 74 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝑥  =  1  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							adantl | 
							⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) )  | 
						
						
							| 76 | 
							
								
							 | 
							rge0ssre | 
							⊢ ( 0 [,) +∞ )  ⊆  ℝ  | 
						
						
							| 77 | 
							
								76 30
							 | 
							sselid | 
							⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ℝ )  | 
						
						
							| 78 | 
							
								75 77
							 | 
							eqeltrd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 79 | 
							
								78
							 | 
							ex | 
							⊢ ( 𝑥  ∈  ( 0 [,] 1 )  →  ( ¬  𝑥  =  1  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( ¬  𝑥  =  1  →  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							con1d | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( ¬  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∈  ℝ  →  𝑥  =  1 ) )  | 
						
						
							| 82 | 
							
								73 81
							 | 
							biimtrid | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ∉  ℝ  →  𝑥  =  1 ) )  | 
						
						
							| 83 | 
							
								72 82
							 | 
							syld | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  𝑥  =  1 ) )  | 
						
						
							| 84 | 
							
								66 83
							 | 
							impbid | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  𝑦  =  +∞ )  →  ( 𝑥  =  1  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( +∞  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( 𝑦  =  +∞  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							bibi2d | 
							⊢ ( +∞  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  +∞ )  ↔  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( ( 𝑥  /  ( 1  −  𝑥 ) )  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( 𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							bibi2d | 
							⊢ ( ( 𝑥  /  ( 1  −  𝑥 ) )  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) )  →  ( ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) )  ↔  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 90 | 
							
								
							 | 
							elico2 | 
							⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 )  ↔  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 ) ) )  | 
						
						
							| 91 | 
							
								89 9 90
							 | 
							mp2an | 
							⊢ ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 )  ↔  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 ) )  | 
						
						
							| 92 | 
							
								55 91
							 | 
							sylib | 
							⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							simp1d | 
							⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ )  | 
						
						
							| 94 | 
							
								92
							 | 
							simp3d | 
							⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							gtned | 
							⊢ ( ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ )  →  1  ≠  ( 𝑦  /  ( 1  +  𝑦 ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							adantll | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  →  1  ≠  ( 𝑦  /  ( 1  +  𝑦 ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							neneqd | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  →  ¬  1  =  ( 𝑦  /  ( 1  +  𝑦 ) ) )  | 
						
						
							| 98 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑥  =  1  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  1  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							notbid | 
							⊢ ( 𝑥  =  1  →  ( ¬  𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  ¬  1  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) )  | 
						
						
							| 100 | 
							
								97 99
							 | 
							syl5ibrcom | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑥  =  1  →  ¬  𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							imp | 
							⊢ ( ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  ∧  𝑥  =  1 )  →  ¬  𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) ) )  | 
						
						
							| 102 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  ∧  𝑥  =  1 )  →  ¬  𝑦  =  +∞ )  | 
						
						
							| 103 | 
							
								101 102
							 | 
							2falsed | 
							⊢ ( ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  ∧  𝑥  =  1 )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  +∞ ) )  | 
						
						
							| 104 | 
							
								
							 | 
							f1ocnvfvb | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  𝑦  ↔  ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  𝑥 ) )  | 
						
						
							| 105 | 
							
								24 104
							 | 
							mp3an1 | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  𝑦  ↔  ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  𝑥 ) )  | 
						
						
							| 106 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  𝑥  ∈  ( 0 [,) 1 ) )  | 
						
						
							| 107 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  V  | 
						
						
							| 108 | 
							
								22
							 | 
							fvmpt2 | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  V )  →  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) )  | 
						
						
							| 109 | 
							
								106 107 108
							 | 
							sylancl | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  ( 𝑥  /  ( 1  −  𝑥 ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							eqeq1d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑥 )  =  𝑦  ↔  ( 𝑥  /  ( 1  −  𝑥 ) )  =  𝑦 ) )  | 
						
						
							| 111 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  𝑦  ∈  ( 0 [,) +∞ ) )  | 
						
						
							| 112 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  V  | 
						
						
							| 113 | 
							
								51
							 | 
							fvmpt2 | 
							⊢ ( ( 𝑦  ∈  ( 0 [,) +∞ )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  V )  →  ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  ( 𝑦  /  ( 1  +  𝑦 ) ) )  | 
						
						
							| 114 | 
							
								111 112 113
							 | 
							sylancl | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  ( 𝑦  /  ( 1  +  𝑦 ) ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							eqeq1d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( ◡ ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ‘ 𝑦 )  =  𝑥  ↔  ( 𝑦  /  ( 1  +  𝑦 ) )  =  𝑥 ) )  | 
						
						
							| 116 | 
							
								105 110 115
							 | 
							3bitr3rd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  =  𝑥  ↔  ( 𝑥  /  ( 1  −  𝑥 ) )  =  𝑦 ) )  | 
						
						
							| 117 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  ( 𝑦  /  ( 1  +  𝑦 ) )  =  𝑥 )  | 
						
						
							| 118 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) )  ↔  ( 𝑥  /  ( 1  −  𝑥 ) )  =  𝑦 )  | 
						
						
							| 119 | 
							
								116 117 118
							 | 
							3bitr4g | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  | 
						
						
							| 120 | 
							
								21 47 119
							 | 
							syl2an | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ¬  𝑥  =  1 )  ∧  ( 𝑦  ∈  ( 0 [,] +∞ )  ∧  ¬  𝑦  =  +∞ ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							an4s | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ( ¬  𝑥  =  1  ∧  ¬  𝑦  =  +∞ ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							anass1rs | 
							⊢ ( ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  ∧  ¬  𝑥  =  1 )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  | 
						
						
							| 123 | 
							
								86 88 103 122
							 | 
							ifbothda | 
							⊢ ( ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  ∧  ¬  𝑦  =  +∞ )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) )  | 
						
						
							| 124 | 
							
								60 62 84 123
							 | 
							ifbothda | 
							⊢ ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  ( 𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] +∞ ) ) )  →  ( 𝑥  =  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) )  ↔  𝑦  =  if ( 𝑥  =  1 ,  +∞ ,  ( 𝑥  /  ( 1  −  𝑥 ) ) ) ) )  | 
						
						
							| 126 | 
							
								1 33 58 125
							 | 
							f1ocnv2d | 
							⊢ ( ⊤  →  ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  ∧  ◡ 𝐹  =  ( 𝑦  ∈  ( 0 [,] +∞ )  ↦  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) ) )  | 
						
						
							| 127 | 
							
								126
							 | 
							mptru | 
							⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )  ∧  ◡ 𝐹  =  ( 𝑦  ∈  ( 0 [,] +∞ )  ↦  if ( 𝑦  =  +∞ ,  1 ,  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) )  |