Step |
Hyp |
Ref |
Expression |
1 |
|
iccpnfhmeo.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
2 |
|
iccpnfhmeo.k |
⊢ 𝐾 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
3 |
|
iccssxr |
⊢ ( 0 [,] 1 ) ⊆ ℝ* |
4 |
|
xrltso |
⊢ < Or ℝ* |
5 |
|
soss |
⊢ ( ( 0 [,] 1 ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] 1 ) ) ) |
6 |
3 4 5
|
mp2 |
⊢ < Or ( 0 [,] 1 ) |
7 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
8 |
|
soss |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) ) |
9 |
7 4 8
|
mp2 |
⊢ < Or ( 0 [,] +∞ ) |
10 |
|
sopo |
⊢ ( < Or ( 0 [,] +∞ ) → < Po ( 0 [,] +∞ ) ) |
11 |
9 10
|
ax-mp |
⊢ < Po ( 0 [,] +∞ ) |
12 |
1
|
iccpnfcnv |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ) ) |
13 |
12
|
simpli |
⊢ 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) |
14 |
|
f1ofo |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) ) |
15 |
13 14
|
ax-mp |
⊢ 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) |
16 |
|
elicc01 |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 ≤ 1 ) ) |
17 |
16
|
simp1bi |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) → 𝑧 ∈ ℝ ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ℝ ) |
19 |
|
elicc01 |
⊢ ( 𝑤 ∈ ( 0 [,] 1 ) ↔ ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ∧ 𝑤 ≤ 1 ) ) |
20 |
19
|
simp1bi |
⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → 𝑤 ∈ ℝ ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑤 ∈ ℝ ) |
22 |
|
1red |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 1 ∈ ℝ ) |
23 |
|
simp3 |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 < 𝑤 ) |
24 |
19
|
simp3bi |
⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → 𝑤 ≤ 1 ) |
25 |
24
|
3ad2ant2 |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑤 ≤ 1 ) |
26 |
18 21 22 23 25
|
ltletrd |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 < 1 ) |
27 |
18 26
|
gtned |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 1 ≠ 𝑧 ) |
28 |
27
|
necomd |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ≠ 1 ) |
29 |
|
ifnefalse |
⊢ ( 𝑧 ≠ 1 → if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
30 |
28 29
|
syl |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
31 |
|
breq2 |
⊢ ( +∞ = if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) → ( ( 𝑧 / ( 1 − 𝑧 ) ) < +∞ ↔ ( 𝑧 / ( 1 − 𝑧 ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) ) |
32 |
|
breq2 |
⊢ ( ( 𝑤 / ( 1 − 𝑤 ) ) = if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) → ( ( 𝑧 / ( 1 − 𝑧 ) ) < ( 𝑤 / ( 1 − 𝑤 ) ) ↔ ( 𝑧 / ( 1 − 𝑧 ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) ) |
33 |
|
1re |
⊢ 1 ∈ ℝ |
34 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 1 − 𝑧 ) ∈ ℝ ) |
35 |
33 18 34
|
sylancr |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 1 − 𝑧 ) ∈ ℝ ) |
36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
37 |
18
|
recnd |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ℂ ) |
38 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 1 − 𝑧 ) = 0 ↔ 1 = 𝑧 ) ) |
39 |
38
|
necon3bid |
⊢ ( ( 1 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 1 − 𝑧 ) ≠ 0 ↔ 1 ≠ 𝑧 ) ) |
40 |
36 37 39
|
sylancr |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ( 1 − 𝑧 ) ≠ 0 ↔ 1 ≠ 𝑧 ) ) |
41 |
27 40
|
mpbird |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 1 − 𝑧 ) ≠ 0 ) |
42 |
18 35 41
|
redivcld |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 / ( 1 − 𝑧 ) ) ∈ ℝ ) |
43 |
42
|
ltpnfd |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 / ( 1 − 𝑧 ) ) < +∞ ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 𝑤 = 1 ) → ( 𝑧 / ( 1 − 𝑧 ) ) < +∞ ) |
45 |
|
simpl3 |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → 𝑧 < 𝑤 ) |
46 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) |
47 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
48 |
46 47
|
icopnfhmeo |
⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ∧ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) 1 ) ) Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ) ) |
49 |
48
|
simpli |
⊢ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) |
50 |
49
|
a1i |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ) |
51 |
|
simp1 |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ( 0 [,] 1 ) ) |
52 |
|
0xr |
⊢ 0 ∈ ℝ* |
53 |
|
1xr |
⊢ 1 ∈ ℝ* |
54 |
|
0le1 |
⊢ 0 ≤ 1 |
55 |
|
snunico |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1 ) → ( ( 0 [,) 1 ) ∪ { 1 } ) = ( 0 [,] 1 ) ) |
56 |
52 53 54 55
|
mp3an |
⊢ ( ( 0 [,) 1 ) ∪ { 1 } ) = ( 0 [,] 1 ) |
57 |
51 56
|
eleqtrrdi |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ) |
58 |
|
elun |
⊢ ( 𝑧 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ↔ ( 𝑧 ∈ ( 0 [,) 1 ) ∨ 𝑧 ∈ { 1 } ) ) |
59 |
57 58
|
sylib |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 ∈ ( 0 [,) 1 ) ∨ 𝑧 ∈ { 1 } ) ) |
60 |
59
|
ord |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑧 ∈ ( 0 [,) 1 ) → 𝑧 ∈ { 1 } ) ) |
61 |
|
elsni |
⊢ ( 𝑧 ∈ { 1 } → 𝑧 = 1 ) |
62 |
60 61
|
syl6 |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑧 ∈ ( 0 [,) 1 ) → 𝑧 = 1 ) ) |
63 |
62
|
necon1ad |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 ≠ 1 → 𝑧 ∈ ( 0 [,) 1 ) ) ) |
64 |
28 63
|
mpd |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ( 0 [,) 1 ) ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → 𝑧 ∈ ( 0 [,) 1 ) ) |
66 |
|
simp2 |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑤 ∈ ( 0 [,] 1 ) ) |
67 |
66 56
|
eleqtrrdi |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑤 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ) |
68 |
|
elun |
⊢ ( 𝑤 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ↔ ( 𝑤 ∈ ( 0 [,) 1 ) ∨ 𝑤 ∈ { 1 } ) ) |
69 |
67 68
|
sylib |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑤 ∈ ( 0 [,) 1 ) ∨ 𝑤 ∈ { 1 } ) ) |
70 |
69
|
ord |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑤 ∈ ( 0 [,) 1 ) → 𝑤 ∈ { 1 } ) ) |
71 |
|
elsni |
⊢ ( 𝑤 ∈ { 1 } → 𝑤 = 1 ) |
72 |
70 71
|
syl6 |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑤 ∈ ( 0 [,) 1 ) → 𝑤 = 1 ) ) |
73 |
72
|
con1d |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑤 = 1 → 𝑤 ∈ ( 0 [,) 1 ) ) ) |
74 |
73
|
imp |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → 𝑤 ∈ ( 0 [,) 1 ) ) |
75 |
|
isorel |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ∧ ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) ) → ( 𝑧 < 𝑤 ↔ ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) < ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) ) ) |
76 |
50 65 74 75
|
syl12anc |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( 𝑧 < 𝑤 ↔ ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) < ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) ) ) |
77 |
45 76
|
mpbid |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) < ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) ) |
78 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
79 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 1 − 𝑥 ) = ( 1 − 𝑧 ) ) |
80 |
78 79
|
oveq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 / ( 1 − 𝑥 ) ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
81 |
|
ovex |
⊢ ( 𝑧 / ( 1 − 𝑧 ) ) ∈ V |
82 |
80 46 81
|
fvmpt |
⊢ ( 𝑧 ∈ ( 0 [,) 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
83 |
65 82
|
syl |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
84 |
|
id |
⊢ ( 𝑥 = 𝑤 → 𝑥 = 𝑤 ) |
85 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 1 − 𝑥 ) = ( 1 − 𝑤 ) ) |
86 |
84 85
|
oveq12d |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 / ( 1 − 𝑥 ) ) = ( 𝑤 / ( 1 − 𝑤 ) ) ) |
87 |
|
ovex |
⊢ ( 𝑤 / ( 1 − 𝑤 ) ) ∈ V |
88 |
86 46 87
|
fvmpt |
⊢ ( 𝑤 ∈ ( 0 [,) 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) = ( 𝑤 / ( 1 − 𝑤 ) ) ) |
89 |
74 88
|
syl |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) = ( 𝑤 / ( 1 − 𝑤 ) ) ) |
90 |
77 83 89
|
3brtr3d |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( 𝑧 / ( 1 − 𝑧 ) ) < ( 𝑤 / ( 1 − 𝑤 ) ) ) |
91 |
31 32 44 90
|
ifbothda |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 / ( 1 − 𝑧 ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
92 |
30 91
|
eqbrtrd |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
93 |
92
|
3expia |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) → ( 𝑧 < 𝑤 → if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) ) |
94 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 1 ↔ 𝑧 = 1 ) ) |
95 |
94 80
|
ifbieq2d |
⊢ ( 𝑥 = 𝑧 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) ) |
96 |
|
pnfex |
⊢ +∞ ∈ V |
97 |
96 81
|
ifex |
⊢ if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) ∈ V |
98 |
95 1 97
|
fvmpt |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) ) |
99 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 1 ↔ 𝑤 = 1 ) ) |
100 |
99 86
|
ifbieq2d |
⊢ ( 𝑥 = 𝑤 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
101 |
96 87
|
ifex |
⊢ if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ∈ V |
102 |
100 1 101
|
fvmpt |
⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
103 |
98 102
|
breqan12d |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ↔ if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) ) |
104 |
93 103
|
sylibrd |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) → ( 𝑧 < 𝑤 → ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) |
105 |
104
|
rgen2 |
⊢ ∀ 𝑧 ∈ ( 0 [,] 1 ) ∀ 𝑤 ∈ ( 0 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) |
106 |
|
soisoi |
⊢ ( ( ( < Or ( 0 [,] 1 ) ∧ < Po ( 0 [,] +∞ ) ) ∧ ( 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) ∧ ∀ 𝑧 ∈ ( 0 [,] 1 ) ∀ 𝑤 ∈ ( 0 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) |
107 |
6 11 15 105 106
|
mp4an |
⊢ 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
108 |
|
letsr |
⊢ ≤ ∈ TosetRel |
109 |
108
|
elexi |
⊢ ≤ ∈ V |
110 |
109
|
inex1 |
⊢ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ V |
111 |
109
|
inex1 |
⊢ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ∈ V |
112 |
|
leiso |
⊢ ( ( ( 0 [,] 1 ) ⊆ ℝ* ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ↔ 𝐹 Isom ≤ , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) ) |
113 |
3 7 112
|
mp2an |
⊢ ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ↔ 𝐹 Isom ≤ , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) |
114 |
107 113
|
mpbi |
⊢ 𝐹 Isom ≤ , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
115 |
|
isores1 |
⊢ ( 𝐹 Isom ≤ , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ↔ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) |
116 |
114 115
|
mpbi |
⊢ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
117 |
|
isores2 |
⊢ ( 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ↔ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) |
118 |
116 117
|
mpbi |
⊢ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
119 |
|
tsrps |
⊢ ( ≤ ∈ TosetRel → ≤ ∈ PosetRel ) |
120 |
108 119
|
ax-mp |
⊢ ≤ ∈ PosetRel |
121 |
|
ledm |
⊢ ℝ* = dom ≤ |
122 |
121
|
psssdm |
⊢ ( ( ≤ ∈ PosetRel ∧ ( 0 [,] 1 ) ⊆ ℝ* ) → dom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) ) |
123 |
120 3 122
|
mp2an |
⊢ dom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) |
124 |
123
|
eqcomi |
⊢ ( 0 [,] 1 ) = dom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
125 |
121
|
psssdm |
⊢ ( ( ≤ ∈ PosetRel ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → dom ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) = ( 0 [,] +∞ ) ) |
126 |
120 7 125
|
mp2an |
⊢ dom ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) = ( 0 [,] +∞ ) |
127 |
126
|
eqcomi |
⊢ ( 0 [,] +∞ ) = dom ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) |
128 |
124 127
|
ordthmeo |
⊢ ( ( ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ V ∧ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) → 𝐹 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) ) ) |
129 |
110 111 118 128
|
mp3an |
⊢ 𝐹 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) ) |
130 |
|
dfii5 |
⊢ II = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |
131 |
|
ordtresticc |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) |
132 |
2 131
|
eqtri |
⊢ 𝐾 = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) |
133 |
130 132
|
oveq12i |
⊢ ( II Homeo 𝐾 ) = ( ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) ) |
134 |
129 133
|
eleqtrri |
⊢ 𝐹 ∈ ( II Homeo 𝐾 ) |
135 |
107 134
|
pm3.2i |
⊢ ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ 𝐹 ∈ ( II Homeo 𝐾 ) ) |