Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( 0 ... 𝑚 ) = ( 0 ... 𝑀 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑚 = 𝑀 → ( ℝ* ↑m ( 0 ... 𝑚 ) ) = ( ℝ* ↑m ( 0 ... 𝑀 ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( 0 ..^ 𝑚 ) = ( 0 ..^ 𝑀 ) ) |
4 |
3
|
raleqdv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
5 |
2 4
|
rabeqbidv |
⊢ ( 𝑚 = 𝑀 → { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑚 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } = { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ) |
6 |
|
df-iccp |
⊢ RePart = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑚 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ) |
7 |
|
ovex |
⊢ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∈ V |
8 |
7
|
rabex |
⊢ { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ V |
9 |
5 6 8
|
fvmpt |
⊢ ( 𝑀 ∈ ℕ → ( RePart ‘ 𝑀 ) = { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ) |