| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccshift.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | iccshift.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | iccshift.3 | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 4 |  | eqeq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  =  ( 𝑧  +  𝑇 )  ↔  𝑥  =  ( 𝑧  +  𝑇 ) ) ) | 
						
							| 5 | 4 | rexbidv | ⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑤  =  ( 𝑧  +  𝑇 )  ↔  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) ) | 
						
							| 6 | 5 | elrab | ⊢ ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↔  ( 𝑥  ∈  ℂ  ∧  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) ) | 
						
							| 7 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) )  →  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑧 𝑥  ∈  ℂ | 
						
							| 10 |  | nfre1 | ⊢ Ⅎ 𝑧 ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) | 
						
							| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑧 ( 𝑥  ∈  ℂ  ∧  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) | 
						
							| 12 | 8 11 | nfan | ⊢ Ⅎ 𝑧 ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑧 𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) | 
						
							| 14 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  =  ( 𝑧  +  𝑇 ) )  →  𝑥  =  ( 𝑧  +  𝑇 ) ) | 
						
							| 15 | 1 2 | iccssred | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 16 | 15 | sselda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑧  ∈  ℝ ) | 
						
							| 17 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑇  ∈  ℝ ) | 
						
							| 18 | 16 17 | readdcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑧  +  𝑇 )  ∈  ℝ ) | 
						
							| 19 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑧  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 21 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 22 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑧  ∈  ℝ  ∧  𝐴  ≤  𝑧  ∧  𝑧  ≤  𝐵 ) ) ) | 
						
							| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑧  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑧  ∈  ℝ  ∧  𝐴  ≤  𝑧  ∧  𝑧  ≤  𝐵 ) ) ) | 
						
							| 24 | 20 23 | mpbid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑧  ∈  ℝ  ∧  𝐴  ≤  𝑧  ∧  𝑧  ≤  𝐵 ) ) | 
						
							| 25 | 24 | simp2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  𝑧 ) | 
						
							| 26 | 19 16 17 25 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴  +  𝑇 )  ≤  ( 𝑧  +  𝑇 ) ) | 
						
							| 27 | 24 | simp3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑧  ≤  𝐵 ) | 
						
							| 28 | 16 21 17 27 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑧  +  𝑇 )  ≤  ( 𝐵  +  𝑇 ) ) | 
						
							| 29 | 18 26 28 | 3jca | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝑧  +  𝑇 )  ∈  ℝ  ∧  ( 𝐴  +  𝑇 )  ≤  ( 𝑧  +  𝑇 )  ∧  ( 𝑧  +  𝑇 )  ≤  ( 𝐵  +  𝑇 ) ) ) | 
						
							| 30 | 29 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  =  ( 𝑧  +  𝑇 ) )  →  ( ( 𝑧  +  𝑇 )  ∈  ℝ  ∧  ( 𝐴  +  𝑇 )  ≤  ( 𝑧  +  𝑇 )  ∧  ( 𝑧  +  𝑇 )  ≤  ( 𝐵  +  𝑇 ) ) ) | 
						
							| 31 | 1 3 | readdcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝑇 )  ∈  ℝ ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  =  ( 𝑧  +  𝑇 ) )  →  ( 𝐴  +  𝑇 )  ∈  ℝ ) | 
						
							| 33 | 2 3 | readdcld | ⊢ ( 𝜑  →  ( 𝐵  +  𝑇 )  ∈  ℝ ) | 
						
							| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  =  ( 𝑧  +  𝑇 ) )  →  ( 𝐵  +  𝑇 )  ∈  ℝ ) | 
						
							| 35 |  | elicc2 | ⊢ ( ( ( 𝐴  +  𝑇 )  ∈  ℝ  ∧  ( 𝐵  +  𝑇 )  ∈  ℝ )  →  ( ( 𝑧  +  𝑇 )  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) )  ↔  ( ( 𝑧  +  𝑇 )  ∈  ℝ  ∧  ( 𝐴  +  𝑇 )  ≤  ( 𝑧  +  𝑇 )  ∧  ( 𝑧  +  𝑇 )  ≤  ( 𝐵  +  𝑇 ) ) ) ) | 
						
							| 36 | 32 34 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  =  ( 𝑧  +  𝑇 ) )  →  ( ( 𝑧  +  𝑇 )  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) )  ↔  ( ( 𝑧  +  𝑇 )  ∈  ℝ  ∧  ( 𝐴  +  𝑇 )  ≤  ( 𝑧  +  𝑇 )  ∧  ( 𝑧  +  𝑇 )  ≤  ( 𝐵  +  𝑇 ) ) ) ) | 
						
							| 37 | 30 36 | mpbird | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  =  ( 𝑧  +  𝑇 ) )  →  ( 𝑧  +  𝑇 )  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) | 
						
							| 38 | 14 37 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  =  ( 𝑧  +  𝑇 ) )  →  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) | 
						
							| 39 | 38 | 3exp | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 𝐴 [,] 𝐵 )  →  ( 𝑥  =  ( 𝑧  +  𝑇 )  →  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) )  →  ( 𝑧  ∈  ( 𝐴 [,] 𝐵 )  →  ( 𝑥  =  ( 𝑧  +  𝑇 )  →  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) ) ) | 
						
							| 41 | 12 13 40 | rexlimd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) )  →  ( ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 )  →  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) ) | 
						
							| 42 | 7 41 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) )  →  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) | 
						
							| 43 | 6 42 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) | 
						
							| 44 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ∈  ℝ ) | 
						
							| 45 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐵  +  𝑇 )  ∈  ℝ ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) | 
						
							| 47 |  | eliccre | ⊢ ( ( ( 𝐴  +  𝑇 )  ∈  ℝ  ∧  ( 𝐵  +  𝑇 )  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 48 | 44 45 46 47 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 49 | 48 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 50 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 51 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 52 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑇  ∈  ℝ ) | 
						
							| 53 | 48 52 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ℝ ) | 
						
							| 54 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 55 | 3 | recnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 56 | 54 55 | pncand | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑇 )  −  𝑇 )  =  𝐴 ) | 
						
							| 57 | 56 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( ( 𝐴  +  𝑇 )  −  𝑇 ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐴  =  ( ( 𝐴  +  𝑇 )  −  𝑇 ) ) | 
						
							| 59 |  | elicc2 | ⊢ ( ( ( 𝐴  +  𝑇 )  ∈  ℝ  ∧  ( 𝐵  +  𝑇 )  ∈  ℝ )  →  ( 𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝐴  +  𝑇 )  ≤  𝑥  ∧  𝑥  ≤  ( 𝐵  +  𝑇 ) ) ) ) | 
						
							| 60 | 44 45 59 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝐴  +  𝑇 )  ≤  𝑥  ∧  𝑥  ≤  ( 𝐵  +  𝑇 ) ) ) ) | 
						
							| 61 | 46 60 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  ( 𝐴  +  𝑇 )  ≤  𝑥  ∧  𝑥  ≤  ( 𝐵  +  𝑇 ) ) ) | 
						
							| 62 | 61 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ≤  𝑥 ) | 
						
							| 63 | 44 48 52 62 | lesub1dd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐴  +  𝑇 )  −  𝑇 )  ≤  ( 𝑥  −  𝑇 ) ) | 
						
							| 64 | 58 63 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐴  ≤  ( 𝑥  −  𝑇 ) ) | 
						
							| 65 | 61 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ≤  ( 𝐵  +  𝑇 ) ) | 
						
							| 66 | 48 45 52 65 | lesub1dd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ≤  ( ( 𝐵  +  𝑇 )  −  𝑇 ) ) | 
						
							| 67 | 2 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 68 | 67 55 | pncand | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝑇 )  −  𝑇 )  =  𝐵 ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐵  +  𝑇 )  −  𝑇 )  =  𝐵 ) | 
						
							| 70 | 66 69 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ≤  𝐵 ) | 
						
							| 71 | 50 51 53 64 70 | eliccd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 72 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑇  ∈  ℂ ) | 
						
							| 73 | 49 72 | npcand | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝑥  −  𝑇 )  +  𝑇 )  =  𝑥 ) | 
						
							| 74 | 73 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  =  ( ( 𝑥  −  𝑇 )  +  𝑇 ) ) | 
						
							| 75 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝑥  −  𝑇 )  →  ( 𝑧  +  𝑇 )  =  ( ( 𝑥  −  𝑇 )  +  𝑇 ) ) | 
						
							| 76 | 75 | rspceeqv | ⊢ ( ( ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  =  ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  →  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) | 
						
							| 77 | 71 74 76 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑥  =  ( 𝑧  +  𝑇 ) ) | 
						
							| 78 | 49 77 6 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑤  =  ( 𝑧  +  𝑇 ) } ) | 
						
							| 79 | 43 78 | impbida | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↔  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) ) | 
						
							| 80 | 79 | eqrdv | ⊢ ( 𝜑  →  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑤  =  ( 𝑧  +  𝑇 ) }  =  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) | 
						
							| 81 | 80 | eqcomd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) )  =  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( 𝐴 [,] 𝐵 ) 𝑤  =  ( 𝑧  +  𝑇 ) } ) |