Step |
Hyp |
Ref |
Expression |
1 |
|
simplr1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → 𝑥 ∈ ℝ ) |
2 |
|
simplr2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → 𝐴 ≤ 𝑥 ) |
3 |
|
simpr1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
4 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
5 |
4
|
sseld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → 𝐶 ∈ ℝ ) ) |
6 |
5
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ ) |
8 |
|
ltle |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 < 𝐶 → 𝑥 ≤ 𝐶 ) ) |
9 |
3 7 8
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → ( 𝑥 < 𝐶 → 𝑥 ≤ 𝐶 ) ) |
10 |
9
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → 𝑥 ≤ 𝐶 ) |
11 |
1 2 10
|
3jca |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) |
12 |
11
|
orcd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
13 |
|
simplr1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → 𝐶 ≤ 𝑥 ) |
15 |
|
simplr3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → 𝑥 ≤ 𝐵 ) |
16 |
13 14 15
|
3jca |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
17 |
16
|
olcd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
18 |
12 17 3 7
|
ltlecasei |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
19 |
18
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
20 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ∈ ℝ ) |
21 |
20
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ∈ ℝ ) ) |
22 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝐴 ≤ 𝑥 ) |
23 |
22
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝐴 ≤ 𝑥 ) ) |
24 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
25 |
20
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ∈ ℝ ) |
26 |
|
simp1 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ ) |
28 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐵 ∈ ℝ ) |
29 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐶 ) |
30 |
29
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
31 |
|
simp3 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ≤ 𝐵 ) |
32 |
31
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐶 ≤ 𝐵 ) |
33 |
25 27 28 30 32
|
letrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ≤ 𝐵 ) |
34 |
33
|
3exp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐵 ) ) ) |
35 |
24 34
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐵 ) ) ) |
36 |
35
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐵 ) ) |
37 |
21 23 36
|
3jcad |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
38 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) |
39 |
38
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) ) |
40 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |
41 |
26
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ ) |
42 |
38
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
43 |
|
simp2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐴 ≤ 𝐶 ) |
44 |
43
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
45 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐶 ≤ 𝑥 ) |
46 |
45
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐶 ≤ 𝑥 ) |
47 |
40 41 42 44 46
|
letrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
48 |
47
|
3exp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝑥 ) ) ) |
49 |
24 48
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝑥 ) ) ) |
50 |
49
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝑥 ) ) |
51 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ≤ 𝐵 ) |
52 |
51
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ≤ 𝐵 ) ) |
53 |
39 50 52
|
3jcad |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
54 |
37 53
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
55 |
19 54
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
56 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
57 |
56
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
58 |
5
|
imdistani |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) |
59 |
58
|
3impa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) |
60 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
61 |
60
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
62 |
|
elicc2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
63 |
62
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
64 |
63
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
65 |
61 64
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
66 |
59 65
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
67 |
55 57 66
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ) ) |
68 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ) |
69 |
67 68
|
bitr4di |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ) ) |
70 |
69
|
eqrdv |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ) |