| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → 𝑥 ∈ ℝ ) |
| 2 |
|
simplr2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → 𝐴 ≤ 𝑥 ) |
| 3 |
|
simpr1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 4 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 5 |
4
|
sseld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → 𝐶 ∈ ℝ ) ) |
| 6 |
5
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 8 |
|
ltle |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 < 𝐶 → 𝑥 ≤ 𝐶 ) ) |
| 9 |
3 7 8
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → ( 𝑥 < 𝐶 → 𝑥 ≤ 𝐶 ) ) |
| 10 |
9
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → 𝑥 ≤ 𝐶 ) |
| 11 |
1 2 10
|
3jca |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) |
| 12 |
11
|
orcd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 13 |
|
simplr1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
| 14 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → 𝐶 ≤ 𝑥 ) |
| 15 |
|
simplr3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → 𝑥 ≤ 𝐵 ) |
| 16 |
13 14 15
|
3jca |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 17 |
16
|
olcd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 18 |
12 17 3 7
|
ltlecasei |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 19 |
18
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
| 20 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ∈ ℝ ) |
| 21 |
20
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ∈ ℝ ) ) |
| 22 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝐴 ≤ 𝑥 ) |
| 23 |
22
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝐴 ≤ 𝑥 ) ) |
| 24 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 25 |
20
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ∈ ℝ ) |
| 26 |
|
simp1 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) |
| 27 |
26
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ ) |
| 28 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐵 ∈ ℝ ) |
| 29 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐶 ) |
| 30 |
29
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
| 31 |
|
simp3 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ≤ 𝐵 ) |
| 32 |
31
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐶 ≤ 𝐵 ) |
| 33 |
25 27 28 30 32
|
letrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ≤ 𝐵 ) |
| 34 |
33
|
3exp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐵 ) ) ) |
| 35 |
24 34
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐵 ) ) ) |
| 36 |
35
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐵 ) ) |
| 37 |
21 23 36
|
3jcad |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 38 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) |
| 39 |
38
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) ) |
| 40 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 41 |
26
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 42 |
38
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 43 |
|
simp2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐴 ≤ 𝐶 ) |
| 44 |
43
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 45 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐶 ≤ 𝑥 ) |
| 46 |
45
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐶 ≤ 𝑥 ) |
| 47 |
40 41 42 44 46
|
letrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 48 |
47
|
3exp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝑥 ) ) ) |
| 49 |
24 48
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝑥 ) ) ) |
| 50 |
49
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝑥 ) ) |
| 51 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ≤ 𝐵 ) |
| 52 |
51
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ≤ 𝐵 ) ) |
| 53 |
39 50 52
|
3jcad |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 54 |
37 53
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 55 |
19 54
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
| 56 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 57 |
56
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 58 |
5
|
imdistani |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) |
| 59 |
58
|
3impa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) |
| 60 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
| 61 |
60
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
| 62 |
|
elicc2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 63 |
62
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 64 |
63
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 65 |
61 64
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
| 66 |
59 65
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
| 67 |
55 57 66
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ) ) |
| 68 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ) |
| 69 |
67 68
|
bitr4di |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ) ) |
| 70 |
69
|
eqrdv |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ) |