Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
2 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
3 |
1 2
|
anim12i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
4 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
5 |
|
xrletr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝑤 ) → 𝐴 ≤ 𝑤 ) ) |
6 |
|
xrletr |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) → 𝑤 ≤ 𝐵 ) ) |
7 |
4 4 5 6
|
ixxss12 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
8 |
3 7
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |