Step |
Hyp |
Ref |
Expression |
1 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
2 |
1
|
elixx3g |
⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
3 |
2
|
simplbi |
⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
5 |
4
|
simp1d |
⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
6 |
4
|
simp2d |
⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
7 |
2
|
simprbi |
⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
9 |
8
|
simpld |
⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
10 |
1
|
elixx3g |
⊢ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ) |
11 |
10
|
simprbi |
⊢ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) |
12 |
11
|
simprd |
⊢ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) → 𝐷 ≤ 𝐵 ) |
13 |
12
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ≤ 𝐵 ) |
14 |
|
xrletr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝑤 ) → 𝐴 ≤ 𝑤 ) ) |
15 |
|
xrletr |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) → 𝑤 ≤ 𝐵 ) ) |
16 |
1 1 14 15
|
ixxss12 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
17 |
5 6 9 13 16
|
syl22anc |
⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |