Metamath Proof Explorer


Theorem iccss2

Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion iccss2 ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-icc [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } )
2 1 elixx3g ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐶𝐵 ) ) )
3 2 simplbi ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) )
4 3 adantr ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) )
5 4 simp1d ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* )
6 4 simp2d ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* )
7 2 simprbi ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴𝐶𝐶𝐵 ) )
8 7 adantr ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴𝐶𝐶𝐵 ) )
9 8 simpld ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴𝐶 )
10 1 elixx3g ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ* ) ∧ ( 𝐴𝐷𝐷𝐵 ) ) )
11 10 simprbi ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴𝐷𝐷𝐵 ) )
12 11 simprd ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) → 𝐷𝐵 )
13 12 adantl ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷𝐵 )
14 xrletr ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 𝐴𝐶𝐶𝑤 ) → 𝐴𝑤 ) )
15 xrletr ( ( 𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤𝐷𝐷𝐵 ) → 𝑤𝐵 ) )
16 1 1 14 15 ixxss12 ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐷𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )
17 5 6 9 13 16 syl22anc ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )