| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ico | ⊢ [,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 2 | 1 | elmpocl1 | ⊢ ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,) 𝐵 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 4 | 1 | elmpocl2 | ⊢ ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,) 𝐵 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 6 | 1 | elixx3g | ⊢ ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ↔  ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 7 | 6 | simprbi | ⊢ ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  →  ( 𝐴  ≤  𝐶  ∧  𝐶  <  𝐵 ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  →  𝐴  ≤  𝐶 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,) 𝐵 ) )  →  𝐴  ≤  𝐶 ) | 
						
							| 10 | 1 | elixx3g | ⊢ ( 𝐷  ∈  ( 𝐴 [,) 𝐵 )  ↔  ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐷  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐷  ∧  𝐷  <  𝐵 ) ) ) | 
						
							| 11 | 10 | simprbi | ⊢ ( 𝐷  ∈  ( 𝐴 [,) 𝐵 )  →  ( 𝐴  ≤  𝐷  ∧  𝐷  <  𝐵 ) ) | 
						
							| 12 | 11 | simprd | ⊢ ( 𝐷  ∈  ( 𝐴 [,) 𝐵 )  →  𝐷  <  𝐵 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,) 𝐵 ) )  →  𝐷  <  𝐵 ) | 
						
							| 14 |  | iccssico | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐶  ∧  𝐷  <  𝐵 ) )  →  ( 𝐶 [,] 𝐷 )  ⊆  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 15 | 3 5 9 13 14 | syl22anc | ⊢ ( ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,) 𝐵 ) )  →  ( 𝐶 [,] 𝐷 )  ⊆  ( 𝐴 [,) 𝐵 ) ) |