Metamath Proof Explorer


Theorem iccssioo

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccssioo ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
2 df-icc [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } )
3 xrltletr ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 𝐴 < 𝐶𝐶𝑤 ) → 𝐴 < 𝑤 ) )
4 xrlelttr ( ( 𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤𝐷𝐷 < 𝐵 ) → 𝑤 < 𝐵 ) )
5 1 2 3 4 ixxss12 ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) )