Step |
Hyp |
Ref |
Expression |
1 |
|
ne0i |
⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
3 |
|
ndmioo |
⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
4 |
3
|
necon1ai |
⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
5 |
2 4
|
syl |
⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
6 |
|
eliooord |
⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) |
8 |
7
|
simpld |
⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝐶 ) |
9 |
|
eliooord |
⊢ ( 𝐷 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐷 ∧ 𝐷 < 𝐵 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 < 𝐷 ∧ 𝐷 < 𝐵 ) ) |
11 |
10
|
simprd |
⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐷 < 𝐵 ) |
12 |
|
iccssioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
13 |
5 8 11 12
|
syl12anc |
⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |