Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccssred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
iccssred.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
Assertion | iccssred | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | iccssred.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
3 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |