Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccssred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| iccssred.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | iccssred | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | iccssred.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |