Metamath Proof Explorer


Theorem iccssred

Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iccssred.1 ( 𝜑𝐴 ∈ ℝ )
iccssred.2 ( 𝜑𝐵 ∈ ℝ )
Assertion iccssred ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 iccssred.1 ( 𝜑𝐴 ∈ ℝ )
2 iccssred.2 ( 𝜑𝐵 ∈ ℝ )
3 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )