| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccsuble.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | iccsuble.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | iccsuble.3 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 4 |  | iccsuble.4 | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 5 |  | eliccre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 7 |  | eliccre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 8 | 1 2 4 7 | syl3anc | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 9 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 11 | 3 10 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) | 
						
							| 12 | 11 | simp3d | ⊢ ( 𝜑  →  𝐶  ≤  𝐵 ) | 
						
							| 13 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐷  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐷  ∈  ℝ  ∧  𝐴  ≤  𝐷  ∧  𝐷  ≤  𝐵 ) ) ) | 
						
							| 14 | 1 2 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐷  ∈  ℝ  ∧  𝐴  ≤  𝐷  ∧  𝐷  ≤  𝐵 ) ) ) | 
						
							| 15 | 4 14 | mpbid | ⊢ ( 𝜑  →  ( 𝐷  ∈  ℝ  ∧  𝐴  ≤  𝐷  ∧  𝐷  ≤  𝐵 ) ) | 
						
							| 16 | 15 | simp2d | ⊢ ( 𝜑  →  𝐴  ≤  𝐷 ) | 
						
							| 17 | 6 1 2 8 12 16 | le2subd | ⊢ ( 𝜑  →  ( 𝐶  −  𝐷 )  ≤  ( 𝐵  −  𝐴 ) ) |