Step |
Hyp |
Ref |
Expression |
1 |
|
iccsuble.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
iccsuble.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
iccsuble.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
4 |
|
iccsuble.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) |
5 |
|
eliccre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
6 |
1 2 3 5
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
7 |
|
eliccre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ∈ ℝ ) |
8 |
1 2 4 7
|
syl3anc |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
9 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
10 |
1 2 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
11 |
3 10
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
12 |
11
|
simp3d |
⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
13 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ) |
14 |
1 2 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ) |
15 |
4 14
|
mpbid |
⊢ ( 𝜑 → ( 𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) |
16 |
15
|
simp2d |
⊢ ( 𝜑 → 𝐴 ≤ 𝐷 ) |
17 |
6 1 2 8 12 16
|
le2subd |
⊢ ( 𝜑 → ( 𝐶 − 𝐷 ) ≤ ( 𝐵 − 𝐴 ) ) |