| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 2 |  | sstr | ⊢ ( ( 𝑆  ⊆  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ℝ )  →  𝑆  ⊆  ℝ ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  ℝ  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 ) )  →  𝑆  ⊆  ℝ ) | 
						
							| 4 | 1 3 | sylan | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 ) )  →  𝑆  ⊆  ℝ ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 )  ∧  𝐶  ∈  𝑆 )  →  𝑆  ⊆  ℝ ) | 
						
							| 6 |  | ne0i | ⊢ ( 𝐶  ∈  𝑆  →  𝑆  ≠  ∅ ) | 
						
							| 7 | 6 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 )  ∧  𝐶  ∈  𝑆 )  →  𝑆  ≠  ∅ ) | 
						
							| 8 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 9 |  | ssel | ⊢ ( 𝑆  ⊆  ( 𝐴 [,] 𝐵 )  →  ( 𝑦  ∈  𝑆  →  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 10 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑦  ∈  ℝ  ∧  𝐴  ≤  𝑦  ∧  𝑦  ≤  𝐵 ) ) ) | 
						
							| 11 | 10 | biimpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  →  ( 𝑦  ∈  ℝ  ∧  𝐴  ≤  𝑦  ∧  𝑦  ≤  𝐵 ) ) ) | 
						
							| 12 | 9 11 | sylan9r | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑦  ∈  𝑆  →  ( 𝑦  ∈  ℝ  ∧  𝐴  ≤  𝑦  ∧  𝑦  ≤  𝐵 ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 ) )  ∧  𝑦  ∈  𝑆 )  →  ( 𝑦  ∈  ℝ  ∧  𝐴  ≤  𝑦  ∧  𝑦  ≤  𝐵 ) ) | 
						
							| 14 | 13 | simp3d | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 ) )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ≤  𝐵 ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 ) )  →  ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝐵 ) | 
						
							| 16 |  | brralrspcev | ⊢ ( ( 𝐵  ∈  ℝ  ∧  ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝐵 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥 ) | 
						
							| 17 | 8 15 16 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥 ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 )  ∧  𝐶  ∈  𝑆 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥 ) | 
						
							| 19 | 5 7 18 | 3jca | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑆  ⊆  ( 𝐴 [,] 𝐵 )  ∧  𝐶  ∈  𝑆 )  →  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥 ) ) |