| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1w |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 ∈ ℂ ↔ 𝑡 ∈ ℂ ) ) |
| 2 |
1
|
3anbi1d |
⊢ ( 𝑎 = 𝑡 → ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ↔ ( 𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 ↑ 2 ) = ( 𝑡 ↑ 2 ) ) |
| 4 |
3
|
oveq1d |
⊢ ( 𝑎 = 𝑡 → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑡 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
| 5 |
4
|
eqeq1d |
⊢ ( 𝑎 = 𝑡 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ↔ ( ( 𝑡 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) |
| 6 |
2 5
|
imbi12d |
⊢ ( 𝑎 = 𝑡 → ( ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ↔ ( ( 𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑡 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) ) |
| 7 |
|
eleq1w |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 ∈ ℂ ↔ 𝑎 ∈ ℂ ) ) |
| 8 |
7
|
3anbi2d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ↔ ( 𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑡 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑡 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑏 = 𝑎 → ( ( ( 𝑡 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ↔ ( ( 𝑡 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) |
| 12 |
8 11
|
imbi12d |
⊢ ( 𝑏 = 𝑎 → ( ( ( 𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑡 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ↔ ( ( 𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑡 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) ) |
| 13 |
|
eleq1w |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 ∈ ℂ ↔ 𝑏 ∈ ℂ ) ) |
| 14 |
13
|
3anbi1d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ↔ ( 𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝑡 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( ( 𝑏 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( 𝑡 = 𝑏 → ( ( ( 𝑡 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ↔ ( ( 𝑏 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) |
| 18 |
14 17
|
imbi12d |
⊢ ( 𝑡 = 𝑏 → ( ( ( 𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑡 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ↔ ( ( 𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑏 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) ) |
| 19 |
|
3ancoma |
⊢ ( ( 𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ↔ ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) |
| 20 |
19
|
imbi1i |
⊢ ( ( ( 𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑏 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ↔ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑏 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) |
| 21 |
|
sqcl |
⊢ ( 𝑏 ∈ ℂ → ( 𝑏 ↑ 2 ) ∈ ℂ ) |
| 22 |
21
|
3ad2ant2 |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( 𝑏 ↑ 2 ) ∈ ℂ ) |
| 23 |
|
sqcl |
⊢ ( 𝑎 ∈ ℂ → ( 𝑎 ↑ 2 ) ∈ ℂ ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( 𝑎 ↑ 2 ) ∈ ℂ ) |
| 25 |
22 24
|
addcomd |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑏 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( ( 𝑏 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ↔ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) |
| 27 |
26
|
pm5.74i |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑏 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ↔ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) |
| 28 |
20 27
|
bitri |
⊢ ( ( ( 𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑏 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ↔ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) |
| 29 |
18 28
|
bitrdi |
⊢ ( 𝑡 = 𝑏 → ( ( ( 𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑡 ↑ 2 ) + ( 𝑎 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ↔ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) ) ) |
| 30 |
6 12 29
|
ichcircshi |
⊢ [ 𝑎 ⇄ 𝑏 ] ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑐 ↑ 2 ) ) |