Step |
Hyp |
Ref |
Expression |
1 |
|
icoval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
2 |
1
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ) ) |
3 |
|
df-ne |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } ≠ ∅ ↔ ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ) |
4 |
|
rabn0 |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) |
5 |
3 4
|
bitr3i |
⊢ ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) |
6 |
|
xrlelttr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) → 𝐴 < 𝐵 ) ) |
7 |
6
|
3com23 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) → 𝐴 < 𝐵 ) ) |
8 |
7
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) → 𝐴 < 𝐵 ) ) |
9 |
8
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) → 𝐴 < 𝐵 ) ) |
10 |
|
qbtwnxr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
11 |
|
qre |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) |
12 |
11
|
rexrd |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ* ) |
13 |
12
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ* ) ) |
14 |
|
simpr1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
15 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
16 |
|
xrltle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 < 𝑥 → 𝐴 ≤ 𝑥 ) ) |
17 |
14 15 16
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 < 𝑥 → 𝐴 ≤ 𝑥 ) ) |
18 |
17
|
anim1d |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) → ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
19 |
13 18
|
anim12d |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) |
20 |
19
|
ex |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) ) |
21 |
12 20
|
syl |
⊢ ( 𝑥 ∈ ℚ → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) ) |
23 |
22
|
pm2.43b |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝑥 ∈ ℚ ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) |
24 |
23
|
reximdv2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
25 |
10 24
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) |
26 |
25
|
3expia |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
27 |
9 26
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ↔ 𝐴 < 𝐵 ) ) |
28 |
5 27
|
syl5bb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ↔ 𝐴 < 𝐵 ) ) |
29 |
|
xrltnle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
30 |
28 29
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
31 |
30
|
con4bid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) } = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
32 |
2 31
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |