Metamath Proof Explorer


Theorem icogelbd

Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses icogelbd.1 ( 𝜑𝐴 ∈ ℝ* )
icogelbd.2 ( 𝜑𝐵 ∈ ℝ* )
icogelbd.3 ( 𝜑𝐶 ∈ ( 𝐴 [,) 𝐵 ) )
Assertion icogelbd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 icogelbd.1 ( 𝜑𝐴 ∈ ℝ* )
2 icogelbd.2 ( 𝜑𝐵 ∈ ℝ* )
3 icogelbd.3 ( 𝜑𝐶 ∈ ( 𝐴 [,) 𝐵 ) )
4 icogelb ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴𝐶 )
5 1 2 3 4 syl3anc ( 𝜑𝐴𝐶 )