Metamath Proof Explorer
Description: An element of a left-closed right-open interval is less than its upper
bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
icoltubd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
|
icoltubd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
|
|
icoltubd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
|
Assertion |
icoltubd |
⊢ ( 𝜑 → 𝐶 < 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
icoltubd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
icoltubd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
icoltubd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
4 |
|
icoltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 < 𝐵 ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → 𝐶 < 𝐵 ) |