Metamath Proof Explorer


Theorem icoltubd

Description: An element of a left-closed right-open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses icoltubd.1 ( 𝜑𝐴 ∈ ℝ* )
icoltubd.2 ( 𝜑𝐵 ∈ ℝ* )
icoltubd.3 ( 𝜑𝐶 ∈ ( 𝐴 [,) 𝐵 ) )
Assertion icoltubd ( 𝜑𝐶 < 𝐵 )

Proof

Step Hyp Ref Expression
1 icoltubd.1 ( 𝜑𝐴 ∈ ℝ* )
2 icoltubd.2 ( 𝜑𝐵 ∈ ℝ* )
3 icoltubd.3 ( 𝜑𝐶 ∈ ( 𝐴 [,) 𝐵 ) )
4 icoltub ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 < 𝐵 )
5 1 2 3 4 syl3anc ( 𝜑𝐶 < 𝐵 )