| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uncom | ⊢ ( ( 𝐵 [,) +∞ )  ∪  ( 𝐴 [,) 𝐵 ) )  =  ( ( 𝐴 [,) 𝐵 )  ∪  ( 𝐵 [,) +∞ ) ) | 
						
							| 2 |  | rexr | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* ) | 
						
							| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 4 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 5 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 6 | 5 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  +∞  ∈  ℝ* ) | 
						
							| 7 |  | xrltle | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  <  𝐵  →  𝐴  ≤  𝐵 ) ) | 
						
							| 8 | 2 7 | sylan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  <  𝐵  →  𝐴  ≤  𝐵 ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 10 |  | pnfge | ⊢ ( 𝐵  ∈  ℝ*  →  𝐵  ≤  +∞ ) | 
						
							| 11 | 4 10 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  𝐵  ≤  +∞ ) | 
						
							| 12 |  | icoun | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  +∞ ) )  →  ( ( 𝐴 [,) 𝐵 )  ∪  ( 𝐵 [,) +∞ ) )  =  ( 𝐴 [,) +∞ ) ) | 
						
							| 13 | 3 4 6 9 11 12 | syl32anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 [,) 𝐵 )  ∪  ( 𝐵 [,) +∞ ) )  =  ( 𝐴 [,) +∞ ) ) | 
						
							| 14 | 1 13 | eqtrid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( ( 𝐵 [,) +∞ )  ∪  ( 𝐴 [,) 𝐵 ) )  =  ( 𝐴 [,) +∞ ) ) | 
						
							| 15 |  | ssun1 | ⊢ ( 𝐵 [,) +∞ )  ⊆  ( ( 𝐵 [,) +∞ )  ∪  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 16 | 15 14 | sseqtrid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( 𝐵 [,) +∞ )  ⊆  ( 𝐴 [,) +∞ ) ) | 
						
							| 17 |  | incom | ⊢ ( ( 𝐵 [,) +∞ )  ∩  ( 𝐴 [,) 𝐵 ) )  =  ( ( 𝐴 [,) 𝐵 )  ∩  ( 𝐵 [,) +∞ ) ) | 
						
							| 18 |  | icodisj | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( ( 𝐴 [,) 𝐵 )  ∩  ( 𝐵 [,) +∞ ) )  =  ∅ ) | 
						
							| 19 | 5 18 | mp3an3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 [,) 𝐵 )  ∩  ( 𝐵 [,) +∞ ) )  =  ∅ ) | 
						
							| 20 | 3 4 19 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 [,) 𝐵 )  ∩  ( 𝐵 [,) +∞ ) )  =  ∅ ) | 
						
							| 21 | 17 20 | eqtrid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( ( 𝐵 [,) +∞ )  ∩  ( 𝐴 [,) 𝐵 ) )  =  ∅ ) | 
						
							| 22 |  | uneqdifeq | ⊢ ( ( ( 𝐵 [,) +∞ )  ⊆  ( 𝐴 [,) +∞ )  ∧  ( ( 𝐵 [,) +∞ )  ∩  ( 𝐴 [,) 𝐵 ) )  =  ∅ )  →  ( ( ( 𝐵 [,) +∞ )  ∪  ( 𝐴 [,) 𝐵 ) )  =  ( 𝐴 [,) +∞ )  ↔  ( ( 𝐴 [,) +∞ )  ∖  ( 𝐵 [,) +∞ ) )  =  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 23 | 16 21 22 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( ( ( 𝐵 [,) +∞ )  ∪  ( 𝐴 [,) 𝐵 ) )  =  ( 𝐴 [,) +∞ )  ↔  ( ( 𝐴 [,) +∞ )  ∖  ( 𝐵 [,) +∞ ) )  =  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 24 | 14 23 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 [,) +∞ )  ∖  ( 𝐵 [,) +∞ ) )  =  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 25 |  | icombl1 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴 [,) +∞ )  ∈  dom  vol ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( 𝐴 [,) +∞ )  ∈  dom  vol ) | 
						
							| 27 |  | xrleloe | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( 𝐵  ≤  +∞  ↔  ( 𝐵  <  +∞  ∨  𝐵  =  +∞ ) ) ) | 
						
							| 28 | 4 6 27 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( 𝐵  ≤  +∞  ↔  ( 𝐵  <  +∞  ∨  𝐵  =  +∞ ) ) ) | 
						
							| 29 | 11 28 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( 𝐵  <  +∞  ∨  𝐵  =  +∞ ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  𝐴  <  𝐵 ) | 
						
							| 31 |  | xrre2 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  +∞ ) )  →  𝐵  ∈  ℝ ) | 
						
							| 32 | 31 | expr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( 𝐵  <  +∞  →  𝐵  ∈  ℝ ) ) | 
						
							| 33 | 3 4 6 30 32 | syl31anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( 𝐵  <  +∞  →  𝐵  ∈  ℝ ) ) | 
						
							| 34 | 33 | orim1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( ( 𝐵  <  +∞  ∨  𝐵  =  +∞ )  →  ( 𝐵  ∈  ℝ  ∨  𝐵  =  +∞ ) ) ) | 
						
							| 35 | 29 34 | mpd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( 𝐵  ∈  ℝ  ∨  𝐵  =  +∞ ) ) | 
						
							| 36 |  | icombl1 | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵 [,) +∞ )  ∈  dom  vol ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝐵  =  +∞  →  ( 𝐵 [,) +∞ )  =  ( +∞ [,) +∞ ) ) | 
						
							| 38 |  | pnfge | ⊢ ( +∞  ∈  ℝ*  →  +∞  ≤  +∞ ) | 
						
							| 39 | 5 38 | ax-mp | ⊢ +∞  ≤  +∞ | 
						
							| 40 |  | ico0 | ⊢ ( ( +∞  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( ( +∞ [,) +∞ )  =  ∅  ↔  +∞  ≤  +∞ ) ) | 
						
							| 41 | 5 5 40 | mp2an | ⊢ ( ( +∞ [,) +∞ )  =  ∅  ↔  +∞  ≤  +∞ ) | 
						
							| 42 | 39 41 | mpbir | ⊢ ( +∞ [,) +∞ )  =  ∅ | 
						
							| 43 | 37 42 | eqtrdi | ⊢ ( 𝐵  =  +∞  →  ( 𝐵 [,) +∞ )  =  ∅ ) | 
						
							| 44 |  | 0mbl | ⊢ ∅  ∈  dom  vol | 
						
							| 45 | 43 44 | eqeltrdi | ⊢ ( 𝐵  =  +∞  →  ( 𝐵 [,) +∞ )  ∈  dom  vol ) | 
						
							| 46 | 36 45 | jaoi | ⊢ ( ( 𝐵  ∈  ℝ  ∨  𝐵  =  +∞ )  →  ( 𝐵 [,) +∞ )  ∈  dom  vol ) | 
						
							| 47 | 35 46 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( 𝐵 [,) +∞ )  ∈  dom  vol ) | 
						
							| 48 |  | difmbl | ⊢ ( ( ( 𝐴 [,) +∞ )  ∈  dom  vol  ∧  ( 𝐵 [,) +∞ )  ∈  dom  vol )  →  ( ( 𝐴 [,) +∞ )  ∖  ( 𝐵 [,) +∞ ) )  ∈  dom  vol ) | 
						
							| 49 | 26 47 48 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 [,) +∞ )  ∖  ( 𝐵 [,) +∞ ) )  ∈  dom  vol ) | 
						
							| 50 | 24 49 | eqeltrrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( 𝐴 [,) 𝐵 )  ∈  dom  vol ) | 
						
							| 51 |  | ico0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 [,) 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 52 | 2 51 | sylan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 [,) 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 53 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  𝐵  ∈  ℝ* ) | 
						
							| 54 | 2 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  𝐴  ∈  ℝ* ) | 
						
							| 55 | 53 54 | xrlenltd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( 𝐵  ≤  𝐴  ↔  ¬  𝐴  <  𝐵 ) ) | 
						
							| 56 | 52 55 | bitrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 [,) 𝐵 )  =  ∅  ↔  ¬  𝐴  <  𝐵 ) ) | 
						
							| 57 | 56 | biimpar | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  ¬  𝐴  <  𝐵 )  →  ( 𝐴 [,) 𝐵 )  =  ∅ ) | 
						
							| 58 | 57 44 | eqeltrdi | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  ∧  ¬  𝐴  <  𝐵 )  →  ( 𝐴 [,) 𝐵 )  ∈  dom  vol ) | 
						
							| 59 | 50 58 | pm2.61dan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴 [,) 𝐵 )  ∈  dom  vol ) |