Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ℝ → +∞ ∈ ℝ* ) |
4 |
|
ltpnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |
5 |
|
snunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 < +∞ ) → ( { 𝐴 } ∪ ( 𝐴 (,) +∞ ) ) = ( 𝐴 [,) +∞ ) ) |
6 |
1 3 4 5
|
syl3anc |
⊢ ( 𝐴 ∈ ℝ → ( { 𝐴 } ∪ ( 𝐴 (,) +∞ ) ) = ( 𝐴 [,) +∞ ) ) |
7 |
|
snssi |
⊢ ( 𝐴 ∈ ℝ → { 𝐴 } ⊆ ℝ ) |
8 |
|
ovolsn |
⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 ) |
9 |
|
nulmbl |
⊢ ( ( { 𝐴 } ⊆ ℝ ∧ ( vol* ‘ { 𝐴 } ) = 0 ) → { 𝐴 } ∈ dom vol ) |
10 |
7 8 9
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → { 𝐴 } ∈ dom vol ) |
11 |
|
ioombl1 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 (,) +∞ ) ∈ dom vol ) |
12 |
1 11
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 (,) +∞ ) ∈ dom vol ) |
13 |
|
unmbl |
⊢ ( ( { 𝐴 } ∈ dom vol ∧ ( 𝐴 (,) +∞ ) ∈ dom vol ) → ( { 𝐴 } ∪ ( 𝐴 (,) +∞ ) ) ∈ dom vol ) |
14 |
10 12 13
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( { 𝐴 } ∪ ( 𝐴 (,) +∞ ) ) ∈ dom vol ) |
15 |
6 14
|
eqeltrrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ∈ dom vol ) |