| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  +∞  ∈  ℝ* ) | 
						
							| 4 |  | ltpnf | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  <  +∞ ) | 
						
							| 5 |  | snunioo | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐴  <  +∞ )  →  ( { 𝐴 }  ∪  ( 𝐴 (,) +∞ ) )  =  ( 𝐴 [,) +∞ ) ) | 
						
							| 6 | 1 3 4 5 | syl3anc | ⊢ ( 𝐴  ∈  ℝ  →  ( { 𝐴 }  ∪  ( 𝐴 (,) +∞ ) )  =  ( 𝐴 [,) +∞ ) ) | 
						
							| 7 |  | snssi | ⊢ ( 𝐴  ∈  ℝ  →  { 𝐴 }  ⊆  ℝ ) | 
						
							| 8 |  | ovolsn | ⊢ ( 𝐴  ∈  ℝ  →  ( vol* ‘ { 𝐴 } )  =  0 ) | 
						
							| 9 |  | nulmbl | ⊢ ( ( { 𝐴 }  ⊆  ℝ  ∧  ( vol* ‘ { 𝐴 } )  =  0 )  →  { 𝐴 }  ∈  dom  vol ) | 
						
							| 10 | 7 8 9 | syl2anc | ⊢ ( 𝐴  ∈  ℝ  →  { 𝐴 }  ∈  dom  vol ) | 
						
							| 11 |  | ioombl1 | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴 (,) +∞ )  ∈  dom  vol ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴 (,) +∞ )  ∈  dom  vol ) | 
						
							| 13 |  | unmbl | ⊢ ( ( { 𝐴 }  ∈  dom  vol  ∧  ( 𝐴 (,) +∞ )  ∈  dom  vol )  →  ( { 𝐴 }  ∪  ( 𝐴 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 14 | 10 12 13 | syl2anc | ⊢ ( 𝐴  ∈  ℝ  →  ( { 𝐴 }  ∪  ( 𝐴 (,) +∞ ) )  ∈  dom  vol ) | 
						
							| 15 | 6 14 | eqeltrrd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴 [,) +∞ )  ∈  dom  vol ) |