Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
2 |
|
eqid |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
3 |
|
eqid |
⊢ ran (,) = ran (,) |
4 |
1 2 3
|
leordtval |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
5 |
|
letop |
⊢ ( ordTop ‘ ≤ ) ∈ Top |
6 |
4 5
|
eqeltrri |
⊢ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top |
7 |
|
tgclb |
⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ↔ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top ) |
8 |
6 7
|
mpbir |
⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases |
9 |
|
bastg |
⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases → ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
11 |
10 4
|
sseqtrri |
⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( ordTop ‘ ≤ ) |
12 |
|
ssun1 |
⊢ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ⊆ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) |
13 |
|
ssun2 |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ⊆ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) |
14 |
|
eqid |
⊢ ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝐴 ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( -∞ [,) 𝑥 ) = ( -∞ [,) 𝐴 ) ) |
16 |
15
|
rspceeqv |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝐴 ) ) → ∃ 𝑥 ∈ ℝ* ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝑥 ) ) |
17 |
14 16
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ* → ∃ 𝑥 ∈ ℝ* ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝑥 ) ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
19 |
|
ovex |
⊢ ( -∞ [,) 𝑥 ) ∈ V |
20 |
18 19
|
elrnmpti |
⊢ ( ( -∞ [,) 𝐴 ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℝ* ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝑥 ) ) |
21 |
17 20
|
sylibr |
⊢ ( 𝐴 ∈ ℝ* → ( -∞ [,) 𝐴 ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) |
22 |
13 21
|
sselid |
⊢ ( 𝐴 ∈ ℝ* → ( -∞ [,) 𝐴 ) ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ) |
23 |
12 22
|
sselid |
⊢ ( 𝐴 ∈ ℝ* → ( -∞ [,) 𝐴 ) ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
24 |
11 23
|
sselid |
⊢ ( 𝐴 ∈ ℝ* → ( -∞ [,) 𝐴 ) ∈ ( ordTop ‘ ≤ ) ) |
25 |
24
|
adantl |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ [,) 𝐴 ) ∈ ( ordTop ‘ ≤ ) ) |
26 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
27 |
26
|
ixxf |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
28 |
27
|
fdmi |
⊢ dom [,) = ( ℝ* × ℝ* ) |
29 |
28
|
ndmov |
⊢ ( ¬ ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ [,) 𝐴 ) = ∅ ) |
30 |
|
0opn |
⊢ ( ( ordTop ‘ ≤ ) ∈ Top → ∅ ∈ ( ordTop ‘ ≤ ) ) |
31 |
5 30
|
ax-mp |
⊢ ∅ ∈ ( ordTop ‘ ≤ ) |
32 |
29 31
|
eqeltrdi |
⊢ ( ¬ ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ [,) 𝐴 ) ∈ ( ordTop ‘ ≤ ) ) |
33 |
25 32
|
pm2.61i |
⊢ ( -∞ [,) 𝐴 ) ∈ ( ordTop ‘ ≤ ) |