| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							icopnfhmeo.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 3 | 
							
								
							 | 
							1xr | 
							⊢ 1  ∈  ℝ*  | 
						
						
							| 4 | 
							
								
							 | 
							elico2 | 
							⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( 𝑥  ∈  ( 0 [,) 1 )  ↔  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥  ∧  𝑥  <  1 ) ) )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							mp2an | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↔  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥  ∧  𝑥  <  1 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simp1bi | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 7 | 
							
								5
							 | 
							simp3bi | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  𝑥  <  1 )  | 
						
						
							| 8 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 9 | 
							
								
							 | 
							difrp | 
							⊢ ( ( 𝑥  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑥  <  1  ↔  ( 1  −  𝑥 )  ∈  ℝ+ ) )  | 
						
						
							| 10 | 
							
								6 8 9
							 | 
							sylancl | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  ( 𝑥  <  1  ↔  ( 1  −  𝑥 )  ∈  ℝ+ ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							mpbid | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  ( 1  −  𝑥 )  ∈  ℝ+ )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							rerpdivcld | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								5
							 | 
							simp2bi | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  0  ≤  𝑥 )  | 
						
						
							| 14 | 
							
								6 11 13
							 | 
							divge0d | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  0  ≤  ( 𝑥  /  ( 1  −  𝑥 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							elrege0 | 
							⊢ ( ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  | 
						
						
							| 16 | 
							
								12 14 15
							 | 
							sylanbrc | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑥  ∈  ( 0 [,) 1 ) )  →  ( 𝑥  /  ( 1  −  𝑥 ) )  ∈  ( 0 [,) +∞ ) )  | 
						
						
							| 18 | 
							
								
							 | 
							elrege0 | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  ↔  ( 𝑦  ∈  ℝ  ∧  0  ≤  𝑦 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simplbi | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  ∈  ℝ )  | 
						
						
							| 20 | 
							
								
							 | 
							readdcl | 
							⊢ ( ( 1  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 1  +  𝑦 )  ∈  ℝ )  | 
						
						
							| 21 | 
							
								8 19 20
							 | 
							sylancr | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( 1  +  𝑦 )  ∈  ℝ )  | 
						
						
							| 22 | 
							
								2
							 | 
							a1i | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  0  ∈  ℝ )  | 
						
						
							| 23 | 
							
								18
							 | 
							simprbi | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  0  ≤  𝑦 )  | 
						
						
							| 24 | 
							
								19
							 | 
							ltp1d | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  <  ( 𝑦  +  1 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 26 | 
							
								19
							 | 
							recnd | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  ∈  ℂ )  | 
						
						
							| 27 | 
							
								
							 | 
							addcom | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 1  +  𝑦 )  =  ( 𝑦  +  1 ) )  | 
						
						
							| 28 | 
							
								25 26 27
							 | 
							sylancr | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( 1  +  𝑦 )  =  ( 𝑦  +  1 ) )  | 
						
						
							| 29 | 
							
								24 28
							 | 
							breqtrrd | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  <  ( 1  +  𝑦 ) )  | 
						
						
							| 30 | 
							
								22 19 21 23 29
							 | 
							lelttrd | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  0  <  ( 1  +  𝑦 ) )  | 
						
						
							| 31 | 
							
								21 30
							 | 
							elrpd | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( 1  +  𝑦 )  ∈  ℝ+ )  | 
						
						
							| 32 | 
							
								19 31
							 | 
							rerpdivcld | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ )  | 
						
						
							| 33 | 
							
								
							 | 
							divge0 | 
							⊢ ( ( ( 𝑦  ∈  ℝ  ∧  0  ≤  𝑦 )  ∧  ( ( 1  +  𝑦 )  ∈  ℝ  ∧  0  <  ( 1  +  𝑦 ) ) )  →  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) ) )  | 
						
						
							| 34 | 
							
								19 23 21 30 33
							 | 
							syl22anc | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) ) )  | 
						
						
							| 35 | 
							
								21
							 | 
							recnd | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( 1  +  𝑦 )  ∈  ℂ )  | 
						
						
							| 36 | 
							
								35
							 | 
							mulridd | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( ( 1  +  𝑦 )  ·  1 )  =  ( 1  +  𝑦 ) )  | 
						
						
							| 37 | 
							
								29 36
							 | 
							breqtrrd | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  𝑦  <  ( ( 1  +  𝑦 )  ·  1 ) )  | 
						
						
							| 38 | 
							
								8
							 | 
							a1i | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  1  ∈  ℝ )  | 
						
						
							| 39 | 
							
								
							 | 
							ltdivmul | 
							⊢ ( ( 𝑦  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( 1  +  𝑦 )  ∈  ℝ  ∧  0  <  ( 1  +  𝑦 ) ) )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  <  1  ↔  𝑦  <  ( ( 1  +  𝑦 )  ·  1 ) ) )  | 
						
						
							| 40 | 
							
								19 38 21 30 39
							 | 
							syl112anc | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  <  1  ↔  𝑦  <  ( ( 1  +  𝑦 )  ·  1 ) ) )  | 
						
						
							| 41 | 
							
								37 40
							 | 
							mpbird | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 )  | 
						
						
							| 42 | 
							
								
							 | 
							elico2 | 
							⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 )  ↔  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 ) ) )  | 
						
						
							| 43 | 
							
								2 3 42
							 | 
							mp2an | 
							⊢ ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 )  ↔  ( ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( 1  +  𝑦 ) )  ∧  ( 𝑦  /  ( 1  +  𝑦 ) )  <  1 ) )  | 
						
						
							| 44 | 
							
								32 34 41 43
							 | 
							syl3anbrc | 
							⊢ ( 𝑦  ∈  ( 0 [,) +∞ )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑦  /  ( 1  +  𝑦 ) )  ∈  ( 0 [,) 1 ) )  | 
						
						
							| 46 | 
							
								26
							 | 
							adantl | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  𝑦  ∈  ℂ )  | 
						
						
							| 47 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 48 | 
							
								47
							 | 
							recnd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  𝑥  ∈  ℂ )  | 
						
						
							| 49 | 
							
								48 46
							 | 
							mulcld | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ )  | 
						
						
							| 50 | 
							
								46 49 48
							 | 
							subadd2d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑦  −  ( 𝑥  ·  𝑦 ) )  =  𝑥  ↔  ( 𝑥  +  ( 𝑥  ·  𝑦 ) )  =  𝑦 ) )  | 
						
						
							| 51 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  1  ∈  ℂ )  | 
						
						
							| 52 | 
							
								51 48 46
							 | 
							subdird | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 1  −  𝑥 )  ·  𝑦 )  =  ( ( 1  ·  𝑦 )  −  ( 𝑥  ·  𝑦 ) ) )  | 
						
						
							| 53 | 
							
								46
							 | 
							mullidd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 1  ·  𝑦 )  =  𝑦 )  | 
						
						
							| 54 | 
							
								53
							 | 
							oveq1d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 1  ·  𝑦 )  −  ( 𝑥  ·  𝑦 ) )  =  ( 𝑦  −  ( 𝑥  ·  𝑦 ) ) )  | 
						
						
							| 55 | 
							
								52 54
							 | 
							eqtrd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 1  −  𝑥 )  ·  𝑦 )  =  ( 𝑦  −  ( 𝑥  ·  𝑦 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							eqeq1d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( ( 1  −  𝑥 )  ·  𝑦 )  =  𝑥  ↔  ( 𝑦  −  ( 𝑥  ·  𝑦 ) )  =  𝑥 ) )  | 
						
						
							| 57 | 
							
								48 51 46
							 | 
							adddid | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥  ·  ( 1  +  𝑦 ) )  =  ( ( 𝑥  ·  1 )  +  ( 𝑥  ·  𝑦 ) ) )  | 
						
						
							| 58 | 
							
								48
							 | 
							mulridd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥  ·  1 )  =  𝑥 )  | 
						
						
							| 59 | 
							
								58
							 | 
							oveq1d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑥  ·  1 )  +  ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  +  ( 𝑥  ·  𝑦 ) ) )  | 
						
						
							| 60 | 
							
								57 59
							 | 
							eqtrd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥  ·  ( 1  +  𝑦 ) )  =  ( 𝑥  +  ( 𝑥  ·  𝑦 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							eqeq1d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑥  ·  ( 1  +  𝑦 ) )  =  𝑦  ↔  ( 𝑥  +  ( 𝑥  ·  𝑦 ) )  =  𝑦 ) )  | 
						
						
							| 62 | 
							
								50 56 61
							 | 
							3bitr4rd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑥  ·  ( 1  +  𝑦 ) )  =  𝑦  ↔  ( ( 1  −  𝑥 )  ·  𝑦 )  =  𝑥 ) )  | 
						
						
							| 63 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑦  =  ( 𝑥  ·  ( 1  +  𝑦 ) )  ↔  ( 𝑥  ·  ( 1  +  𝑦 ) )  =  𝑦 )  | 
						
						
							| 64 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑥  =  ( ( 1  −  𝑥 )  ·  𝑦 )  ↔  ( ( 1  −  𝑥 )  ·  𝑦 )  =  𝑥 )  | 
						
						
							| 65 | 
							
								62 63 64
							 | 
							3bitr4g | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑦  =  ( 𝑥  ·  ( 1  +  𝑦 ) )  ↔  𝑥  =  ( ( 1  −  𝑥 )  ·  𝑦 ) ) )  | 
						
						
							| 66 | 
							
								35
							 | 
							adantl | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 1  +  𝑦 )  ∈  ℂ )  | 
						
						
							| 67 | 
							
								31
							 | 
							adantl | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 1  +  𝑦 )  ∈  ℝ+ )  | 
						
						
							| 68 | 
							
								67
							 | 
							rpne0d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 1  +  𝑦 )  ≠  0 )  | 
						
						
							| 69 | 
							
								46 48 66 68
							 | 
							divmul3d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  =  𝑥  ↔  𝑦  =  ( 𝑥  ·  ( 1  +  𝑦 ) ) ) )  | 
						
						
							| 70 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 1  −  𝑥 )  ∈  ℝ+ )  | 
						
						
							| 71 | 
							
								70
							 | 
							rpcnd | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 1  −  𝑥 )  ∈  ℂ )  | 
						
						
							| 72 | 
							
								70
							 | 
							rpne0d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 1  −  𝑥 )  ≠  0 )  | 
						
						
							| 73 | 
							
								48 46 71 72
							 | 
							divmul2d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑥  /  ( 1  −  𝑥 ) )  =  𝑦  ↔  𝑥  =  ( ( 1  −  𝑥 )  ·  𝑦 ) ) )  | 
						
						
							| 74 | 
							
								65 69 73
							 | 
							3bitr4d | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑦  /  ( 1  +  𝑦 ) )  =  𝑥  ↔  ( 𝑥  /  ( 1  −  𝑥 ) )  =  𝑦 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  ( 𝑦  /  ( 1  +  𝑦 ) )  =  𝑥 )  | 
						
						
							| 76 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) )  ↔  ( 𝑥  /  ( 1  −  𝑥 ) )  =  𝑦 )  | 
						
						
							| 77 | 
							
								74 75 76
							 | 
							3bitr4g | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) +∞ ) ) )  →  ( 𝑥  =  ( 𝑦  /  ( 1  +  𝑦 ) )  ↔  𝑦  =  ( 𝑥  /  ( 1  −  𝑥 ) ) ) )  | 
						
						
							| 79 | 
							
								1 17 45 78
							 | 
							f1ocnv2d | 
							⊢ ( ⊤  →  ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  ◡ 𝐹  =  ( 𝑦  ∈  ( 0 [,) +∞ )  ↦  ( 𝑦  /  ( 1  +  𝑦 ) ) ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							mptru | 
							⊢ ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  ◡ 𝐹  =  ( 𝑦  ∈  ( 0 [,) +∞ )  ↦  ( 𝑦  /  ( 1  +  𝑦 ) ) ) )  |