| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							icopnfhmeo.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  ( 0 [,) 1 )  ↦  ( 𝑥  /  ( 1  −  𝑥 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							icopnfhmeo.j | 
							⊢ 𝐽  =  ( TopOpen ‘ ℂfld )  | 
						
						
							| 3 | 
							
								1
							 | 
							icopnfcnv | 
							⊢ ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  ◡ 𝐹  =  ( 𝑦  ∈  ( 0 [,) +∞ )  ↦  ( 𝑦  /  ( 1  +  𝑦 ) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							simpli | 
							⊢ 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  | 
						
						
							| 5 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 6 | 
							
								
							 | 
							1xr | 
							⊢ 1  ∈  ℝ*  | 
						
						
							| 7 | 
							
								
							 | 
							elico2 | 
							⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( 𝑥  ∈  ( 0 [,) 1 )  ↔  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥  ∧  𝑥  <  1 ) ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							mp2an | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  ↔  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥  ∧  𝑥  <  1 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simp1bi | 
							⊢ ( 𝑥  ∈  ( 0 [,) 1 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 10 | 
							
								9
							 | 
							ssriv | 
							⊢ ( 0 [,) 1 )  ⊆  ℝ  | 
						
						
							| 11 | 
							
								10
							 | 
							sseli | 
							⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  𝑧  ∈  ℝ )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  𝑧  ∈  ℝ )  | 
						
						
							| 13 | 
							
								
							 | 
							elico2 | 
							⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( 𝑤  ∈  ( 0 [,) 1 )  ↔  ( 𝑤  ∈  ℝ  ∧  0  ≤  𝑤  ∧  𝑤  <  1 ) ) )  | 
						
						
							| 14 | 
							
								5 6 13
							 | 
							mp2an | 
							⊢ ( 𝑤  ∈  ( 0 [,) 1 )  ↔  ( 𝑤  ∈  ℝ  ∧  0  ≤  𝑤  ∧  𝑤  <  1 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							simp3bi | 
							⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  𝑤  <  1 )  | 
						
						
							| 16 | 
							
								10
							 | 
							sseli | 
							⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  𝑤  ∈  ℝ )  | 
						
						
							| 17 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 18 | 
							
								
							 | 
							difrp | 
							⊢ ( ( 𝑤  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑤  <  1  ↔  ( 1  −  𝑤 )  ∈  ℝ+ ) )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							sylancl | 
							⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  ( 𝑤  <  1  ↔  ( 1  −  𝑤 )  ∈  ℝ+ ) )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							mpbid | 
							⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  ( 1  −  𝑤 )  ∈  ℝ+ )  | 
						
						
							| 21 | 
							
								20
							 | 
							rpregt0d | 
							⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  ( ( 1  −  𝑤 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑤 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantl | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 1  −  𝑤 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑤 ) ) )  | 
						
						
							| 23 | 
							
								16
							 | 
							adantl | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  𝑤  ∈  ℝ )  | 
						
						
							| 24 | 
							
								
							 | 
							elico2 | 
							⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( 𝑧  ∈  ( 0 [,) 1 )  ↔  ( 𝑧  ∈  ℝ  ∧  0  ≤  𝑧  ∧  𝑧  <  1 ) ) )  | 
						
						
							| 25 | 
							
								5 6 24
							 | 
							mp2an | 
							⊢ ( 𝑧  ∈  ( 0 [,) 1 )  ↔  ( 𝑧  ∈  ℝ  ∧  0  ≤  𝑧  ∧  𝑧  <  1 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							simp3bi | 
							⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  𝑧  <  1 )  | 
						
						
							| 27 | 
							
								
							 | 
							difrp | 
							⊢ ( ( 𝑧  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑧  <  1  ↔  ( 1  −  𝑧 )  ∈  ℝ+ ) )  | 
						
						
							| 28 | 
							
								11 17 27
							 | 
							sylancl | 
							⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  ( 𝑧  <  1  ↔  ( 1  −  𝑧 )  ∈  ℝ+ ) )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							mpbid | 
							⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  ( 1  −  𝑧 )  ∈  ℝ+ )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 1  −  𝑧 )  ∈  ℝ+ )  | 
						
						
							| 31 | 
							
								30
							 | 
							rpregt0d | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 1  −  𝑧 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑧 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							lt2mul2div | 
							⊢ ( ( ( 𝑧  ∈  ℝ  ∧  ( ( 1  −  𝑤 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑤 ) ) )  ∧  ( 𝑤  ∈  ℝ  ∧  ( ( 1  −  𝑧 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑧 ) ) ) )  →  ( ( 𝑧  ·  ( 1  −  𝑤 ) )  <  ( 𝑤  ·  ( 1  −  𝑧 ) )  ↔  ( 𝑧  /  ( 1  −  𝑧 ) )  <  ( 𝑤  /  ( 1  −  𝑤 ) ) ) )  | 
						
						
							| 33 | 
							
								12 22 23 31 32
							 | 
							syl22anc | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝑧  ·  ( 1  −  𝑤 ) )  <  ( 𝑤  ·  ( 1  −  𝑧 ) )  ↔  ( 𝑧  /  ( 1  −  𝑧 ) )  <  ( 𝑤  /  ( 1  −  𝑤 ) ) ) )  | 
						
						
							| 34 | 
							
								12 23
							 | 
							remulcld | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  ·  𝑤 )  ∈  ℝ )  | 
						
						
							| 35 | 
							
								12 23 34
							 | 
							ltsub1d | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  <  𝑤  ↔  ( 𝑧  −  ( 𝑧  ·  𝑤 ) )  <  ( 𝑤  −  ( 𝑧  ·  𝑤 ) ) ) )  | 
						
						
							| 36 | 
							
								12
							 | 
							recnd | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  𝑧  ∈  ℂ )  | 
						
						
							| 37 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  1  ∈  ℂ )  | 
						
						
							| 38 | 
							
								23
							 | 
							recnd | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  𝑤  ∈  ℂ )  | 
						
						
							| 39 | 
							
								36 37 38
							 | 
							subdid | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  ·  ( 1  −  𝑤 ) )  =  ( ( 𝑧  ·  1 )  −  ( 𝑧  ·  𝑤 ) ) )  | 
						
						
							| 40 | 
							
								36
							 | 
							mulridd | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  ·  1 )  =  𝑧 )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveq1d | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝑧  ·  1 )  −  ( 𝑧  ·  𝑤 ) )  =  ( 𝑧  −  ( 𝑧  ·  𝑤 ) ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							eqtrd | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  ·  ( 1  −  𝑤 ) )  =  ( 𝑧  −  ( 𝑧  ·  𝑤 ) ) )  | 
						
						
							| 43 | 
							
								38 37 36
							 | 
							subdid | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑤  ·  ( 1  −  𝑧 ) )  =  ( ( 𝑤  ·  1 )  −  ( 𝑤  ·  𝑧 ) ) )  | 
						
						
							| 44 | 
							
								38
							 | 
							mulridd | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑤  ·  1 )  =  𝑤 )  | 
						
						
							| 45 | 
							
								38 36
							 | 
							mulcomd | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑤  ·  𝑧 )  =  ( 𝑧  ·  𝑤 ) )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							oveq12d | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝑤  ·  1 )  −  ( 𝑤  ·  𝑧 ) )  =  ( 𝑤  −  ( 𝑧  ·  𝑤 ) ) )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							eqtrd | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑤  ·  ( 1  −  𝑧 ) )  =  ( 𝑤  −  ( 𝑧  ·  𝑤 ) ) )  | 
						
						
							| 48 | 
							
								42 47
							 | 
							breq12d | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝑧  ·  ( 1  −  𝑤 ) )  <  ( 𝑤  ·  ( 1  −  𝑧 ) )  ↔  ( 𝑧  −  ( 𝑧  ·  𝑤 ) )  <  ( 𝑤  −  ( 𝑧  ·  𝑤 ) ) ) )  | 
						
						
							| 49 | 
							
								35 48
							 | 
							bitr4d | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  <  𝑤  ↔  ( 𝑧  ·  ( 1  −  𝑤 ) )  <  ( 𝑤  ·  ( 1  −  𝑧 ) ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝑧  →  𝑥  =  𝑧 )  | 
						
						
							| 51 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝑧  →  ( 1  −  𝑥 )  =  ( 1  −  𝑧 ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑥  /  ( 1  −  𝑥 ) )  =  ( 𝑧  /  ( 1  −  𝑧 ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑧  /  ( 1  −  𝑧 ) )  ∈  V  | 
						
						
							| 54 | 
							
								52 1 53
							 | 
							fvmpt | 
							⊢ ( 𝑧  ∈  ( 0 [,) 1 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧  /  ( 1  −  𝑧 ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝑤  →  𝑥  =  𝑤 )  | 
						
						
							| 56 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝑤  →  ( 1  −  𝑥 )  =  ( 1  −  𝑤 ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝑥  /  ( 1  −  𝑥 ) )  =  ( 𝑤  /  ( 1  −  𝑤 ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑤  /  ( 1  −  𝑤 ) )  ∈  V  | 
						
						
							| 59 | 
							
								57 1 58
							 | 
							fvmpt | 
							⊢ ( 𝑤  ∈  ( 0 [,) 1 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝑤  /  ( 1  −  𝑤 ) ) )  | 
						
						
							| 60 | 
							
								54 59
							 | 
							breqan12d | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 )  ↔  ( 𝑧  /  ( 1  −  𝑧 ) )  <  ( 𝑤  /  ( 1  −  𝑤 ) ) ) )  | 
						
						
							| 61 | 
							
								33 49 60
							 | 
							3bitr4d | 
							⊢ ( ( 𝑧  ∈  ( 0 [,) 1 )  ∧  𝑤  ∈  ( 0 [,) 1 ) )  →  ( 𝑧  <  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							rgen2 | 
							⊢ ∀ 𝑧  ∈  ( 0 [,) 1 ) ∀ 𝑤  ∈  ( 0 [,) 1 ) ( 𝑧  <  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) )  | 
						
						
							| 63 | 
							
								
							 | 
							df-isom | 
							⊢ ( 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ )  ∧  ∀ 𝑧  ∈  ( 0 [,) 1 ) ∀ 𝑤  ∈  ( 0 [,) 1 ) ( 𝑧  <  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 64 | 
							
								4 62 63
							 | 
							mpbir2an | 
							⊢ 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  | 
						
						
							| 65 | 
							
								
							 | 
							letsr | 
							⊢  ≤   ∈   TosetRel   | 
						
						
							| 66 | 
							
								65
							 | 
							elexi | 
							⊢  ≤   ∈  V  | 
						
						
							| 67 | 
							
								66
							 | 
							inex1 | 
							⊢ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) )  ∈  V  | 
						
						
							| 68 | 
							
								66
							 | 
							inex1 | 
							⊢ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) )  ∈  V  | 
						
						
							| 69 | 
							
								
							 | 
							icossxr | 
							⊢ ( 0 [,) 1 )  ⊆  ℝ*  | 
						
						
							| 70 | 
							
								
							 | 
							icossxr | 
							⊢ ( 0 [,) +∞ )  ⊆  ℝ*  | 
						
						
							| 71 | 
							
								
							 | 
							leiso | 
							⊢ ( ( ( 0 [,) 1 )  ⊆  ℝ*  ∧  ( 0 [,) +∞ )  ⊆  ℝ* )  →  ( 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  𝐹  Isom   ≤  ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) ) )  | 
						
						
							| 72 | 
							
								69 70 71
							 | 
							mp2an | 
							⊢ ( 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  𝐹  Isom   ≤  ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) )  | 
						
						
							| 73 | 
							
								64 72
							 | 
							mpbi | 
							⊢ 𝐹  Isom   ≤  ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  | 
						
						
							| 74 | 
							
								
							 | 
							isores1 | 
							⊢ ( 𝐹  Isom   ≤  ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) )  | 
						
						
							| 75 | 
							
								73 74
							 | 
							mpbi | 
							⊢ 𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  | 
						
						
							| 76 | 
							
								
							 | 
							isores2 | 
							⊢ ( 𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,   ≤  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ↔  𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) )  | 
						
						
							| 77 | 
							
								75 76
							 | 
							mpbi | 
							⊢ 𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  | 
						
						
							| 78 | 
							
								
							 | 
							tsrps | 
							⊢ (  ≤   ∈   TosetRel   →   ≤   ∈  PosetRel )  | 
						
						
							| 79 | 
							
								65 78
							 | 
							ax-mp | 
							⊢  ≤   ∈  PosetRel  | 
						
						
							| 80 | 
							
								
							 | 
							ledm | 
							⊢ ℝ*  =  dom   ≤   | 
						
						
							| 81 | 
							
								80
							 | 
							psssdm | 
							⊢ ( (  ≤   ∈  PosetRel  ∧  ( 0 [,) 1 )  ⊆  ℝ* )  →  dom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) )  =  ( 0 [,) 1 ) )  | 
						
						
							| 82 | 
							
								79 69 81
							 | 
							mp2an | 
							⊢ dom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) )  =  ( 0 [,) 1 )  | 
						
						
							| 83 | 
							
								82
							 | 
							eqcomi | 
							⊢ ( 0 [,) 1 )  =  dom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) )  | 
						
						
							| 84 | 
							
								80
							 | 
							psssdm | 
							⊢ ( (  ≤   ∈  PosetRel  ∧  ( 0 [,) +∞ )  ⊆  ℝ* )  →  dom  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) )  =  ( 0 [,) +∞ ) )  | 
						
						
							| 85 | 
							
								79 70 84
							 | 
							mp2an | 
							⊢ dom  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) )  =  ( 0 [,) +∞ )  | 
						
						
							| 86 | 
							
								85
							 | 
							eqcomi | 
							⊢ ( 0 [,) +∞ )  =  dom  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) )  | 
						
						
							| 87 | 
							
								83 86
							 | 
							ordthmeo | 
							⊢ ( ( (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) )  ∈  V  ∧  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) )  ∈  V  ∧  𝐹  Isom  (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ,  (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) ) )  →  𝐹  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ) ) )  | 
						
						
							| 88 | 
							
								67 68 77 87
							 | 
							mp3an | 
							⊢ 𝐹  ∈  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							eqid | 
							⊢ ( ordTop ‘  ≤  )  =  ( ordTop ‘  ≤  )  | 
						
						
							| 90 | 
							
								2 89
							 | 
							xrrest2 | 
							⊢ ( ( 0 [,) 1 )  ⊆  ℝ  →  ( 𝐽  ↾t  ( 0 [,) 1 ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) 1 ) ) )  | 
						
						
							| 91 | 
							
								10 90
							 | 
							ax-mp | 
							⊢ ( 𝐽  ↾t  ( 0 [,) 1 ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) 1 ) )  | 
						
						
							| 92 | 
							
								
							 | 
							iccssico2 | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) 1 )  ∧  𝑦  ∈  ( 0 [,) 1 ) )  →  ( 𝑥 [,] 𝑦 )  ⊆  ( 0 [,) 1 ) )  | 
						
						
							| 93 | 
							
								69 92
							 | 
							ordtrestixx | 
							⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) 1 ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) )  | 
						
						
							| 94 | 
							
								91 93
							 | 
							eqtri | 
							⊢ ( 𝐽  ↾t  ( 0 [,) 1 ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) )  | 
						
						
							| 95 | 
							
								
							 | 
							rge0ssre | 
							⊢ ( 0 [,) +∞ )  ⊆  ℝ  | 
						
						
							| 96 | 
							
								2 89
							 | 
							xrrest2 | 
							⊢ ( ( 0 [,) +∞ )  ⊆  ℝ  →  ( 𝐽  ↾t  ( 0 [,) +∞ ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) +∞ ) ) )  | 
						
						
							| 97 | 
							
								95 96
							 | 
							ax-mp | 
							⊢ ( 𝐽  ↾t  ( 0 [,) +∞ ) )  =  ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) +∞ ) )  | 
						
						
							| 98 | 
							
								
							 | 
							iccssico2 | 
							⊢ ( ( 𝑥  ∈  ( 0 [,) +∞ )  ∧  𝑦  ∈  ( 0 [,) +∞ ) )  →  ( 𝑥 [,] 𝑦 )  ⊆  ( 0 [,) +∞ ) )  | 
						
						
							| 99 | 
							
								70 98
							 | 
							ordtrestixx | 
							⊢ ( ( ordTop ‘  ≤  )  ↾t  ( 0 [,) +∞ ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) )  | 
						
						
							| 100 | 
							
								97 99
							 | 
							eqtri | 
							⊢ ( 𝐽  ↾t  ( 0 [,) +∞ ) )  =  ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) )  | 
						
						
							| 101 | 
							
								94 100
							 | 
							oveq12i | 
							⊢ ( ( 𝐽  ↾t  ( 0 [,) 1 ) ) Homeo ( 𝐽  ↾t  ( 0 [,) +∞ ) ) )  =  ( ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) 1 )  ×  ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ‘ (  ≤   ∩  ( ( 0 [,) +∞ )  ×  ( 0 [,) +∞ ) ) ) ) )  | 
						
						
							| 102 | 
							
								88 101
							 | 
							eleqtrri | 
							⊢ 𝐹  ∈  ( ( 𝐽  ↾t  ( 0 [,) 1 ) ) Homeo ( 𝐽  ↾t  ( 0 [,) +∞ ) ) )  | 
						
						
							| 103 | 
							
								64 102
							 | 
							pm3.2i | 
							⊢ ( 𝐹  Isom   <  ,   <  ( ( 0 [,) 1 ) ,  ( 0 [,) +∞ ) )  ∧  𝐹  ∈  ( ( 𝐽  ↾t  ( 0 [,) 1 ) ) Homeo ( 𝐽  ↾t  ( 0 [,) +∞ ) ) ) )  |