Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ℝ* ) |
2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → +∞ ∈ ℝ* ) |
4 |
|
nltpnft |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) ) |
5 |
4
|
necon2abid |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < +∞ ↔ 𝐴 ≠ +∞ ) ) |
6 |
5
|
biimpar |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → 𝐴 < +∞ ) |
7 |
|
lbico1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 < +∞ ) → 𝐴 ∈ ( 𝐴 [,) +∞ ) ) |
8 |
1 3 6 7
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ( 𝐴 [,) +∞ ) ) |
9 |
8
|
ne0d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → ( 𝐴 [,) +∞ ) ≠ ∅ ) |
10 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
11 |
|
idd |
⊢ ( ( 𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑤 < +∞ → 𝑤 < +∞ ) ) |
12 |
|
xrltle |
⊢ ( ( 𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑤 < +∞ → 𝑤 ≤ +∞ ) ) |
13 |
|
xrltle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 ≤ 𝑤 ) ) |
14 |
|
idd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤 ) ) |
15 |
10 11 12 13 14
|
ixxub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐴 [,) +∞ ) ≠ ∅ ) → sup ( ( 𝐴 [,) +∞ ) , ℝ* , < ) = +∞ ) |
16 |
1 3 9 15
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → sup ( ( 𝐴 [,) +∞ ) , ℝ* , < ) = +∞ ) |