Metamath Proof Explorer


Theorem icossico

Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Assertion icossico ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐷𝐵 ) ) → ( 𝐶 [,) 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
2 xrletr ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 𝐴𝐶𝐶𝑤 ) → 𝐴𝑤 ) )
3 xrltletr ( ( 𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤 < 𝐷𝐷𝐵 ) → 𝑤 < 𝐵 ) )
4 1 1 2 3 ixxss12 ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐷𝐵 ) ) → ( 𝐶 [,) 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) )