Metamath Proof Explorer


Theorem icossre

Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion icossre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 elico2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵 ) ) )
2 1 biimp3a ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵 ) )
3 2 simp1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ℝ )
4 3 3expia ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) → 𝑥 ∈ ℝ ) )
5 4 ssrdv ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ℝ )