Metamath Proof Explorer


Theorem icoun

Description: The union of two adjacent left-closed right-open real intervals is a left-closed right-open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion icoun ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴𝐵𝐵𝐶 ) ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,) 𝐶 ) ) = ( 𝐴 [,) 𝐶 ) )

Proof

Step Hyp Ref Expression
1 df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
2 xrlenlt ( ( 𝐵 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝐵𝑤 ↔ ¬ 𝑤 < 𝐵 ) )
3 xrltletr ( ( 𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝑤 < 𝐵𝐵𝐶 ) → 𝑤 < 𝐶 ) )
4 xrletr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 𝐴𝐵𝐵𝑤 ) → 𝐴𝑤 ) )
5 1 1 2 1 3 4 ixxun ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴𝐵𝐵𝐶 ) ) → ( ( 𝐴 [,) 𝐵 ) ∪ ( 𝐵 [,) 𝐶 ) ) = ( 𝐴 [,) 𝐶 ) )