Metamath Proof Explorer


Theorem idcn

Description: A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006) (Proof shortened by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion idcn ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) )

Proof

Step Hyp Ref Expression
1 ssid 𝐽𝐽
2 ssidcn ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ↔ 𝐽𝐽 ) )
3 2 anidms ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ↔ 𝐽𝐽 ) )
4 1 3 mpbiri ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) )