Metamath Proof Explorer
Description: The identity function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
idcncfg.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
|
|
idcncfg.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
|
Assertion |
idcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
idcncfg.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
idcncfg.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
3 |
|
cncfmptid |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ 𝐵 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ 𝐵 ) ) |