Metamath Proof Explorer


Theorem idcncfg

Description: The identity function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses idcncfg.a ( 𝜑𝐴𝐵 )
idcncfg.b ( 𝜑𝐵 ⊆ ℂ )
Assertion idcncfg ( 𝜑 → ( 𝑥𝐴𝑥 ) ∈ ( 𝐴cn𝐵 ) )

Proof

Step Hyp Ref Expression
1 idcncfg.a ( 𝜑𝐴𝐵 )
2 idcncfg.b ( 𝜑𝐵 ⊆ ℂ )
3 cncfmptid ( ( 𝐴𝐵𝐵 ⊆ ℂ ) → ( 𝑥𝐴𝑥 ) ∈ ( 𝐴cn𝐵 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝑥𝐴𝑥 ) ∈ ( 𝐴cn𝐵 ) )