Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
⊢ ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ |
2 |
|
f1of |
⊢ ( ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ → ( I ↾ ℋ ) : ℋ ⟶ ℋ ) |
3 |
1 2
|
ax-mp |
⊢ ( I ↾ ℋ ) : ℋ ⟶ ℋ |
4 |
|
id |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+ ) |
5 |
|
fvresi |
⊢ ( 𝑤 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑤 ) = 𝑤 ) |
6 |
|
fvresi |
⊢ ( 𝑥 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑥 ) = 𝑥 ) |
7 |
5 6
|
oveqan12rd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) = ( 𝑤 −ℎ 𝑥 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) |
9 |
8
|
breq1d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 ) ) |
10 |
9
|
biimprd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
11 |
10
|
ralrimiva |
⊢ ( 𝑥 ∈ ℋ → ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
12 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 ) ) |
13 |
12
|
rspceaimv |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
14 |
4 11 13
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
15 |
14
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) |
16 |
|
elcnop |
⊢ ( ( I ↾ ℋ ) ∈ ContOp ↔ ( ( I ↾ ℋ ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( ( I ↾ ℋ ) ‘ 𝑤 ) −ℎ ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
17 |
3 15 16
|
mpbir2an |
⊢ ( I ↾ ℋ ) ∈ ContOp |