| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 2 |
|
zexpcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ) |
| 4 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 5 |
|
dvdsmul2 |
⊢ ( ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∥ ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) ) |
| 7 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
| 8 |
|
expm1t |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ↑ 𝑁 ) = ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) ) |
| 9 |
7 8
|
sylan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ↑ 𝑁 ) = ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) ) |
| 10 |
6 9
|
breqtrrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( 𝑀 ↑ 𝑁 ) ) |