Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉 ) |
2 |
|
reli |
⊢ Rel I |
3 |
2
|
brrelex1i |
⊢ ( 𝐴 I 𝐵 → 𝐴 ∈ V ) |
4 |
1 3
|
anim12ci |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
5 |
|
eleq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉 ) ) |
6 |
5
|
biimparc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑉 ) |
7 |
6
|
elexd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ V ) |
8 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑉 ) |
9 |
7 8
|
jca |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) |
11 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
12 |
|
df-id |
⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } |
13 |
10 11 12
|
brabg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |
14 |
4 9 13
|
pm5.21nd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |