| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							id | 
							⊢ ( 𝐵  ∈  𝑉  →  𝐵  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							reli | 
							⊢ Rel   I   | 
						
						
							| 3 | 
							
								2
							 | 
							brrelex1i | 
							⊢ ( 𝐴  I  𝐵  →  𝐴  ∈  V )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							anim12ci | 
							⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐴  I  𝐵 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  𝑉 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∈  𝑉  ↔  𝐵  ∈  𝑉 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							biimparc | 
							⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 7 | 
							
								6
							 | 
							elexd | 
							⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  𝑉 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							jca | 
							⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐴  =  𝐵 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  𝑉 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  𝑦  ↔  𝐴  =  𝑦 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝐴  =  𝑦  ↔  𝐴  =  𝐵 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							df-id | 
							⊢  I   =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  =  𝑦 }  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							brabg | 
							⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  I  𝐵  ↔  𝐴  =  𝐵 ) )  | 
						
						
							| 14 | 
							
								4 9 13
							 | 
							pm5.21nd | 
							⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  I  𝐵  ↔  𝐴  =  𝐵 ) )  |