Description: The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Proof shortened by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ider | ⊢ I Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
2 | df-id | ⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } | |
3 | 1 2 | eqer | ⊢ I Er V |