Metamath Proof Explorer


Theorem idfu1

Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses idfuval.i 𝐼 = ( idfunc𝐶 )
idfuval.b 𝐵 = ( Base ‘ 𝐶 )
idfuval.c ( 𝜑𝐶 ∈ Cat )
idfu1.x ( 𝜑𝑋𝐵 )
Assertion idfu1 ( 𝜑 → ( ( 1st𝐼 ) ‘ 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 idfuval.i 𝐼 = ( idfunc𝐶 )
2 idfuval.b 𝐵 = ( Base ‘ 𝐶 )
3 idfuval.c ( 𝜑𝐶 ∈ Cat )
4 idfu1.x ( 𝜑𝑋𝐵 )
5 1 2 3 idfu1st ( 𝜑 → ( 1st𝐼 ) = ( I ↾ 𝐵 ) )
6 5 fveq1d ( 𝜑 → ( ( 1st𝐼 ) ‘ 𝑋 ) = ( ( I ↾ 𝐵 ) ‘ 𝑋 ) )
7 fvresi ( 𝑋𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑋 ) = 𝑋 )
8 4 7 syl ( 𝜑 → ( ( I ↾ 𝐵 ) ‘ 𝑋 ) = 𝑋 )
9 6 8 eqtrd ( 𝜑 → ( ( 1st𝐼 ) ‘ 𝑋 ) = 𝑋 )