Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
idfu1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
Assertion | idfu1 | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐼 ) ‘ 𝑋 ) = 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
2 | idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
3 | idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
4 | idfu1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
5 | 1 2 3 | idfu1st | ⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) = ( I ↾ 𝐵 ) ) |
6 | 5 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐼 ) ‘ 𝑋 ) = ( ( I ↾ 𝐵 ) ‘ 𝑋 ) ) |
7 | fvresi | ⊢ ( 𝑋 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑋 ) = 𝑋 ) | |
8 | 4 7 | syl | ⊢ ( 𝜑 → ( ( I ↾ 𝐵 ) ‘ 𝑋 ) = 𝑋 ) |
9 | 6 8 | eqtrd | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐼 ) ‘ 𝑋 ) = 𝑋 ) |