| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfuval.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
| 2 |
|
idfuval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
idfuval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 5 |
1 2 3 4
|
idfuval |
⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) = ( 1st ‘ 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) ) |
| 7 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 8 |
|
resiexg |
⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) |
| 9 |
7 8
|
ax-mp |
⊢ ( I ↾ 𝐵 ) ∈ V |
| 10 |
7 7
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 11 |
10
|
mptex |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) ∈ V |
| 12 |
9 11
|
op1st |
⊢ ( 1st ‘ 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) = ( I ↾ 𝐵 ) |
| 13 |
6 12
|
eqtrdi |
⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) = ( I ↾ 𝐵 ) ) |