Metamath Proof Explorer


Theorem idfu2

Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses idfuval.i 𝐼 = ( idfunc𝐶 )
idfuval.b 𝐵 = ( Base ‘ 𝐶 )
idfuval.c ( 𝜑𝐶 ∈ Cat )
idfuval.h 𝐻 = ( Hom ‘ 𝐶 )
idfu2nd.x ( 𝜑𝑋𝐵 )
idfu2nd.y ( 𝜑𝑌𝐵 )
idfu2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
Assertion idfu2 ( 𝜑 → ( ( 𝑋 ( 2nd𝐼 ) 𝑌 ) ‘ 𝐹 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 idfuval.i 𝐼 = ( idfunc𝐶 )
2 idfuval.b 𝐵 = ( Base ‘ 𝐶 )
3 idfuval.c ( 𝜑𝐶 ∈ Cat )
4 idfuval.h 𝐻 = ( Hom ‘ 𝐶 )
5 idfu2nd.x ( 𝜑𝑋𝐵 )
6 idfu2nd.y ( 𝜑𝑌𝐵 )
7 idfu2.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
8 1 2 3 4 5 6 idfu2nd ( 𝜑 → ( 𝑋 ( 2nd𝐼 ) 𝑌 ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) )
9 8 fveq1d ( 𝜑 → ( ( 𝑋 ( 2nd𝐼 ) 𝑌 ) ‘ 𝐹 ) = ( ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ‘ 𝐹 ) )
10 fvresi ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ‘ 𝐹 ) = 𝐹 )
11 7 10 syl ( 𝜑 → ( ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ‘ 𝐹 ) = 𝐹 )
12 9 11 eqtrd ( 𝜑 → ( ( 𝑋 ( 2nd𝐼 ) 𝑌 ) ‘ 𝐹 ) = 𝐹 )