Step |
Hyp |
Ref |
Expression |
1 |
|
idfuval.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
2 |
|
idfuval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
idfuval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
idfuval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
|
idfu2nd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
idfu2nd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
idfu2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
8 |
1 2 3 4 5 6
|
idfu2nd |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) ‘ 𝐹 ) = ( ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ‘ 𝐹 ) ) |
10 |
|
fvresi |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ‘ 𝐹 ) = 𝐹 ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ‘ 𝐹 ) = 𝐹 ) |
12 |
9 11
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) ‘ 𝐹 ) = 𝐹 ) |