Step |
Hyp |
Ref |
Expression |
1 |
|
idfuval.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
2 |
|
idfuval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
idfuval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
idfuval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
|
idfu2nd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
idfu2nd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
df-ov |
⊢ ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( ( 2nd ‘ 𝐼 ) ‘ 〈 𝑋 , 𝑌 〉 ) |
8 |
1 2 3 4
|
idfuval |
⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
9 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ 𝐼 ) = ( 2nd ‘ 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) ) |
10 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
11 |
|
resiexg |
⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) |
12 |
10 11
|
ax-mp |
⊢ ( I ↾ 𝐵 ) ∈ V |
13 |
10 10
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
14 |
13
|
mptex |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ∈ V |
15 |
12 14
|
op2nd |
⊢ ( 2nd ‘ 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) |
16 |
9 15
|
eqtrdi |
⊢ ( 𝜑 → ( 2nd ‘ 𝐼 ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → 𝑧 = 〈 𝑋 , 𝑌 〉 ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
19 |
|
df-ov |
⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) |
20 |
18 19
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝑋 𝐻 𝑌 ) ) |
21 |
20
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → ( I ↾ ( 𝐻 ‘ 𝑧 ) ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ) |
22 |
5 6
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
23 |
|
ovex |
⊢ ( 𝑋 𝐻 𝑌 ) ∈ V |
24 |
|
resiexg |
⊢ ( ( 𝑋 𝐻 𝑌 ) ∈ V → ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ∈ V ) |
25 |
23 24
|
mp1i |
⊢ ( 𝜑 → ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ∈ V ) |
26 |
16 21 22 25
|
fvmptd |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝐼 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ) |
27 |
7 26
|
eqtrid |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ) |