Description: Lemma for idfudiag1bas and idfudiag1 . (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfudiag1lem.1 | ⊢ ( 𝜑 → ( I ↾ 𝐴 ) = ( 𝐴 × { 𝐵 } ) ) | |
| idfudiag1lem.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| Assertion | idfudiag1lem | ⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfudiag1lem.1 | ⊢ ( 𝜑 → ( I ↾ 𝐴 ) = ( 𝐴 × { 𝐵 } ) ) | |
| 2 | idfudiag1lem.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 3 | rnresi | ⊢ ran ( I ↾ 𝐴 ) = 𝐴 | |
| 4 | 1 | rneqd | ⊢ ( 𝜑 → ran ( I ↾ 𝐴 ) = ran ( 𝐴 × { 𝐵 } ) ) |
| 5 | 3 4 | eqtr3id | ⊢ ( 𝜑 → 𝐴 = ran ( 𝐴 × { 𝐵 } ) ) |
| 6 | rnxp | ⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × { 𝐵 } ) = { 𝐵 } ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ran ( 𝐴 × { 𝐵 } ) = { 𝐵 } ) |
| 8 | 5 7 | eqtrd | ⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |