Metamath Proof Explorer


Theorem idfudiag1lem

Description: Lemma for idfudiag1bas and idfudiag1 . (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses idfudiag1lem.1 ( 𝜑 → ( I ↾ 𝐴 ) = ( 𝐴 × { 𝐵 } ) )
idfudiag1lem.2 ( 𝜑𝐴 ≠ ∅ )
Assertion idfudiag1lem ( 𝜑𝐴 = { 𝐵 } )

Proof

Step Hyp Ref Expression
1 idfudiag1lem.1 ( 𝜑 → ( I ↾ 𝐴 ) = ( 𝐴 × { 𝐵 } ) )
2 idfudiag1lem.2 ( 𝜑𝐴 ≠ ∅ )
3 rnresi ran ( I ↾ 𝐴 ) = 𝐴
4 1 rneqd ( 𝜑 → ran ( I ↾ 𝐴 ) = ran ( 𝐴 × { 𝐵 } ) )
5 3 4 eqtr3id ( 𝜑𝐴 = ran ( 𝐴 × { 𝐵 } ) )
6 rnxp ( 𝐴 ≠ ∅ → ran ( 𝐴 × { 𝐵 } ) = { 𝐵 } )
7 2 6 syl ( 𝜑 → ran ( 𝐴 × { 𝐵 } ) = { 𝐵 } )
8 5 7 eqtrd ( 𝜑𝐴 = { 𝐵 } )