| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							idfusubc.s | 
							⊢ 𝑆  =  ( 𝐶  ↾cat  𝐽 )  | 
						
						
							| 2 | 
							
								
							 | 
							idfusubc.i | 
							⊢ 𝐼  =  ( idfunc ‘ 𝑆 )  | 
						
						
							| 3 | 
							
								
							 | 
							idfusubc.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑆 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							idfusubc0 | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  𝐼  =  〈 (  I   ↾  𝐵 ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  (  I   ↾  ( 𝑥 ( Hom  ‘ 𝑆 ) 𝑦 ) ) ) 〉 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 6 | 
							
								
							 | 
							subcrcl | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  𝐶  ∈  Cat )  | 
						
						
							| 7 | 
							
								
							 | 
							id | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  𝐽  ∈  ( Subcat ‘ 𝐶 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  dom  dom  𝐽  =  dom  dom  𝐽 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							subcfn | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  𝐽  Fn  ( dom  dom  𝐽  ×  dom  dom  𝐽 ) )  | 
						
						
							| 10 | 
							
								7 9 5
							 | 
							subcss1 | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  dom  dom  𝐽  ⊆  ( Base ‘ 𝐶 ) )  | 
						
						
							| 11 | 
							
								1 5 6 9 10
							 | 
							reschom | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  𝐽  =  ( Hom  ‘ 𝑆 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqcomd | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  ( Hom  ‘ 𝑆 )  =  𝐽 )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveqd | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  ( 𝑥 ( Hom  ‘ 𝑆 ) 𝑦 )  =  ( 𝑥 𝐽 𝑦 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							reseq2d | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  (  I   ↾  ( 𝑥 ( Hom  ‘ 𝑆 ) 𝑦 ) )  =  (  I   ↾  ( 𝑥 𝐽 𝑦 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							mpoeq3dv | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  (  I   ↾  ( 𝑥 ( Hom  ‘ 𝑆 ) 𝑦 ) ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  (  I   ↾  ( 𝑥 𝐽 𝑦 ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							opeq2d | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  〈 (  I   ↾  𝐵 ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  (  I   ↾  ( 𝑥 ( Hom  ‘ 𝑆 ) 𝑦 ) ) ) 〉  =  〈 (  I   ↾  𝐵 ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  (  I   ↾  ( 𝑥 𝐽 𝑦 ) ) ) 〉 )  | 
						
						
							| 17 | 
							
								4 16
							 | 
							eqtrd | 
							⊢ ( 𝐽  ∈  ( Subcat ‘ 𝐶 )  →  𝐼  =  〈 (  I   ↾  𝐵 ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  (  I   ↾  ( 𝑥 𝐽 𝑦 ) ) ) 〉 )  |