Metamath Proof Explorer


Theorem idghm

Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypothesis idghm.b 𝐵 = ( Base ‘ 𝐺 )
Assertion idghm ( 𝐺 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝐺 GrpHom 𝐺 ) )

Proof

Step Hyp Ref Expression
1 idghm.b 𝐵 = ( Base ‘ 𝐺 )
2 id ( 𝐺 ∈ Grp → 𝐺 ∈ Grp )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 1 3 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵 ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝐵 )
5 4 3expb ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝐵 )
6 fvresi ( ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝐺 ) 𝑏 ) ) = ( 𝑎 ( +g𝐺 ) 𝑏 ) )
7 5 6 syl ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝐺 ) 𝑏 ) ) = ( 𝑎 ( +g𝐺 ) 𝑏 ) )
8 fvresi ( 𝑎𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑎 ) = 𝑎 )
9 fvresi ( 𝑏𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑏 ) = 𝑏 )
10 8 9 oveqan12d ( ( 𝑎𝐵𝑏𝐵 ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g𝐺 ) 𝑏 ) )
11 10 adantl ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g𝐺 ) 𝑏 ) )
12 7 11 eqtr4d ( ( 𝐺 ∈ Grp ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝐺 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) )
13 12 ralrimivva ( 𝐺 ∈ Grp → ∀ 𝑎𝐵𝑏𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝐺 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) )
14 f1oi ( I ↾ 𝐵 ) : 𝐵1-1-onto𝐵
15 f1of ( ( I ↾ 𝐵 ) : 𝐵1-1-onto𝐵 → ( I ↾ 𝐵 ) : 𝐵𝐵 )
16 14 15 ax-mp ( I ↾ 𝐵 ) : 𝐵𝐵
17 13 16 jctil ( 𝐺 ∈ Grp → ( ( I ↾ 𝐵 ) : 𝐵𝐵 ∧ ∀ 𝑎𝐵𝑏𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝐺 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) )
18 1 1 3 3 isghm ( ( I ↾ 𝐵 ) ∈ ( 𝐺 GrpHom 𝐺 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ Grp ) ∧ ( ( I ↾ 𝐵 ) : 𝐵𝐵 ∧ ∀ 𝑎𝐵𝑏𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝐺 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) ) )
19 2 2 17 18 syl21anbrc ( 𝐺 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝐺 GrpHom 𝐺 ) )