Metamath Proof Explorer


Theorem idhmeo

Description: The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion idhmeo ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Homeo 𝐽 ) )

Proof

Step Hyp Ref Expression
1 idcn ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) )
2 cnvresid ( I ↾ 𝑋 ) = ( I ↾ 𝑋 )
3 2 1 eqeltrid ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) )
4 ishmeo ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Homeo 𝐽 ) ↔ ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ∧ ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ) )
5 1 3 4 sylanbrc ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Homeo 𝐽 ) )