| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoif |
⊢ Iop : ℋ –1-1-onto→ ℋ |
| 2 |
|
f1of |
⊢ ( Iop : ℋ –1-1-onto→ ℋ → Iop : ℋ ⟶ ℋ ) |
| 3 |
1 2
|
ax-mp |
⊢ Iop : ℋ ⟶ ℋ |
| 4 |
|
hoival |
⊢ ( 𝑥 ∈ ℋ → ( Iop ‘ 𝑥 ) = 𝑥 ) |
| 5 |
4
|
eqcomd |
⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( Iop ‘ 𝑥 ) ) |
| 6 |
|
hoival |
⊢ ( 𝑦 ∈ ℋ → ( Iop ‘ 𝑦 ) = 𝑦 ) |
| 7 |
5 6
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( Iop ‘ 𝑦 ) ) = ( ( Iop ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 8 |
7
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( Iop ‘ 𝑦 ) ) = ( ( Iop ‘ 𝑥 ) ·ih 𝑦 ) |
| 9 |
|
elhmop |
⊢ ( Iop ∈ HrmOp ↔ ( Iop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( Iop ‘ 𝑦 ) ) = ( ( Iop ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 10 |
3 8 9
|
mpbir2an |
⊢ Iop ∈ HrmOp |