Metamath Proof Explorer


Theorem idhmop

Description: The Hilbert space identity operator is a Hermitian operator. (Contributed by NM, 22-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion idhmop Iop ∈ HrmOp

Proof

Step Hyp Ref Expression
1 hoif Iop : ℋ –1-1-onto→ ℋ
2 f1of ( Iop : ℋ –1-1-onto→ ℋ → Iop : ℋ ⟶ ℋ )
3 1 2 ax-mp Iop : ℋ ⟶ ℋ
4 hoival ( 𝑥 ∈ ℋ → ( Iop𝑥 ) = 𝑥 )
5 4 eqcomd ( 𝑥 ∈ ℋ → 𝑥 = ( Iop𝑥 ) )
6 hoival ( 𝑦 ∈ ℋ → ( Iop𝑦 ) = 𝑦 )
7 5 6 oveqan12d ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( Iop𝑦 ) ) = ( ( Iop𝑥 ) ·ih 𝑦 ) )
8 7 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( Iop𝑦 ) ) = ( ( Iop𝑥 ) ·ih 𝑦 )
9 elhmop ( Iop ∈ HrmOp ↔ ( Iop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( Iop𝑦 ) ) = ( ( Iop𝑥 ) ·ih 𝑦 ) ) )
10 3 8 9 mpbir2an Iop ∈ HrmOp