Metamath Proof Explorer


Theorem idinv

Description: The inverse of the identity is the identity. Example 3.13 of Adamek p. 28. (Contributed by AV, 9-Apr-2020)

Ref Expression
Hypotheses invid.b 𝐵 = ( Base ‘ 𝐶 )
invid.i 𝐼 = ( Id ‘ 𝐶 )
invid.c ( 𝜑𝐶 ∈ Cat )
invid.x ( 𝜑𝑋𝐵 )
Assertion idinv ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ‘ ( 𝐼𝑋 ) ) = ( 𝐼𝑋 ) )

Proof

Step Hyp Ref Expression
1 invid.b 𝐵 = ( Base ‘ 𝐶 )
2 invid.i 𝐼 = ( Id ‘ 𝐶 )
3 invid.c ( 𝜑𝐶 ∈ Cat )
4 invid.x ( 𝜑𝑋𝐵 )
5 eqid ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 )
6 1 5 3 4 4 invfun ( 𝜑 → Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) )
7 1 2 3 4 invid ( 𝜑 → ( 𝐼𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) )
8 funbrfv ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) → ( ( 𝐼𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ‘ ( 𝐼𝑋 ) ) = ( 𝐼𝑋 ) ) )
9 6 7 8 sylc ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ‘ ( 𝐼𝑋 ) ) = ( 𝐼𝑋 ) )