Description: The inverse of the identity is the identity. Example 3.13 of Adamek p. 28. (Contributed by AV, 9-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invid.i | ⊢ 𝐼 = ( Id ‘ 𝐶 ) | ||
| invid.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | idinv | ⊢ ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invid.i | ⊢ 𝐼 = ( Id ‘ 𝐶 ) | |
| 3 | invid.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 6 | 1 5 3 4 4 | invfun | ⊢ ( 𝜑 → Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ) |
| 7 | 1 2 3 4 | invid | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) |
| 8 | funbrfv | ⊢ ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) → ( ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) ) | |
| 9 | 6 7 8 | sylc | ⊢ ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |