Step |
Hyp |
Ref |
Expression |
1 |
|
idlaut.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
idlaut.i |
⊢ 𝐼 = ( LAut ‘ 𝐾 ) |
3 |
|
f1oi |
⊢ ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 |
4 |
3
|
a1i |
⊢ ( 𝐾 ∈ 𝐴 → ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 ) |
5 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
6 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
7 |
5 6
|
breqan12d |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ↔ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) ) |
8 |
7
|
bicomd |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ) |
9 |
8
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) |
10 |
9
|
a1i |
⊢ ( 𝐾 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ) |
11 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
12 |
1 11 2
|
islaut |
⊢ ( 𝐾 ∈ 𝐴 → ( ( I ↾ 𝐵 ) ∈ 𝐼 ↔ ( ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ) ) ) |
13 |
4 10 12
|
mpbir2and |
⊢ ( 𝐾 ∈ 𝐴 → ( I ↾ 𝐵 ) ∈ 𝐼 ) |