Step |
Hyp |
Ref |
Expression |
1 |
|
idldil.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
idldil.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
idldil.d |
⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 ) |
5 |
1 4
|
idlaut |
⊢ ( 𝐾 ∈ 𝐴 → ( I ↾ 𝐵 ) ∈ ( LAut ‘ 𝐾 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ ( LAut ‘ 𝐾 ) ) |
7 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
8 |
7
|
a1d |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) ) |
9 |
8
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
10 |
9
|
a1i |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) ) |
11 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
12 |
1 11 2 4 3
|
isldil |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝐵 ) ∈ 𝐷 ↔ ( ( I ↾ 𝐵 ) ∈ ( LAut ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) ) ) ) |
13 |
6 10 12
|
mpbir2and |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝐷 ) |