| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlmhm.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
| 3 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 5 |
|
id |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ LMod ) |
| 6 |
|
eqidd |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) ) |
| 7 |
|
lmodgrp |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) |
| 8 |
1
|
idghm |
⊢ ( 𝑀 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝑀 GrpHom 𝑀 ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑀 ∈ LMod → ( I ↾ 𝐵 ) ∈ ( 𝑀 GrpHom 𝑀 ) ) |
| 10 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 11 |
10
|
3expb |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 12 |
|
fvresi |
⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
| 14 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
| 15 |
14
|
ad2antll |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
| 16 |
15
|
oveq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
| 17 |
13 16
|
eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ) |
| 18 |
1 2 2 3 3 4 5 5 6 9 17
|
islmhmd |
⊢ ( 𝑀 ∈ LMod → ( I ↾ 𝐵 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |