Step |
Hyp |
Ref |
Expression |
1 |
|
idltrn.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
idltrn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
idltrn.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
1 2 4
|
idldil |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) |
6 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
simplrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) |
8 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) |
9 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
10 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
12 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
13 |
9 10 11 12 2
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑞 ( meet ‘ 𝐾 ) 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
14 |
6 7 8 13
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑞 ( meet ‘ 𝐾 ) 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
15 |
1 12
|
atbase |
⊢ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → 𝑞 ∈ 𝐵 ) |
16 |
|
fvresi |
⊢ ( 𝑞 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑞 ) = 𝑞 ) |
17 |
7 15 16
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑞 ) = 𝑞 ) |
18 |
17
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑞 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑞 ) ) = ( 𝑞 ( join ‘ 𝐾 ) 𝑞 ) ) |
19 |
|
simplll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐾 ∈ HL ) |
20 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
21 |
20 12
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑞 ( join ‘ 𝐾 ) 𝑞 ) = 𝑞 ) |
22 |
19 7 21
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑞 ( join ‘ 𝐾 ) 𝑞 ) = 𝑞 ) |
23 |
18 22
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑞 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑞 ) ) = 𝑞 ) |
24 |
23
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑞 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( 𝑞 ( meet ‘ 𝐾 ) 𝑊 ) ) |
25 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) |
26 |
1 12
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ 𝐵 ) |
27 |
|
fvresi |
⊢ ( 𝑝 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑝 ) = 𝑝 ) |
28 |
25 26 27
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑝 ) = 𝑝 ) |
29 |
28
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑝 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑝 ) ) = ( 𝑝 ( join ‘ 𝐾 ) 𝑝 ) ) |
30 |
20 12
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑝 ) = 𝑝 ) |
31 |
19 25 30
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑝 ) = 𝑝 ) |
32 |
29 31
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑝 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑝 ) ) = 𝑝 ) |
33 |
32
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( 𝑝 ( meet ‘ 𝐾 ) 𝑊 ) ) |
34 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) |
35 |
9 10 11 12 2
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑝 ( meet ‘ 𝐾 ) 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
36 |
6 25 34 35
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑝 ( meet ‘ 𝐾 ) 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
37 |
33 36
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
38 |
14 24 37
|
3eqtr4rd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
39 |
38
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
40 |
39
|
ralrimivva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
41 |
9 20 10 12 2 4 3
|
isltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝐵 ) ∈ 𝑇 ↔ ( ( I ↾ 𝐵 ) ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
42 |
5 40 41
|
mpbir2and |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |