Step |
Hyp |
Ref |
Expression |
1 |
|
idmhm.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
id |
⊢ ( 𝑀 ∈ Mnd → 𝑀 ∈ Mnd ) |
3 |
|
f1oi |
⊢ ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 |
4 |
|
f1of |
⊢ ( ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 → ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ) |
5 |
3 4
|
mp1i |
⊢ ( 𝑀 ∈ Mnd → ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
7 |
1 6
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
8 |
7
|
3expb |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
9 |
|
fvresi |
⊢ ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
11 |
|
fvresi |
⊢ ( 𝑎 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑎 ) = 𝑎 ) |
12 |
|
fvresi |
⊢ ( 𝑏 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑏 ) = 𝑏 ) |
13 |
11 12
|
oveqan12d |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
15 |
10 14
|
eqtr4d |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) |
16 |
15
|
ralrimivva |
⊢ ( 𝑀 ∈ Mnd → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
18 |
1 17
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
19 |
|
fvresi |
⊢ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝑀 ∈ Mnd → ( ( I ↾ 𝐵 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) |
21 |
5 16 20
|
3jca |
⊢ ( 𝑀 ∈ Mnd → ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ∧ ( ( I ↾ 𝐵 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) ) |
22 |
1 1 6 6 17 17
|
ismhm |
⊢ ( ( I ↾ 𝐵 ) ∈ ( 𝑀 MndHom 𝑀 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ∧ ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ∧ ( ( I ↾ 𝐵 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) ) ) |
23 |
2 2 21 22
|
syl21anbrc |
⊢ ( 𝑀 ∈ Mnd → ( I ↾ 𝐵 ) ∈ ( 𝑀 MndHom 𝑀 ) ) |