| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idmhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | id | ⊢ ( 𝑀  ∈  Mnd  →  𝑀  ∈  Mnd ) | 
						
							| 3 |  | f1oi | ⊢ (  I   ↾  𝐵 ) : 𝐵 –1-1-onto→ 𝐵 | 
						
							| 4 |  | f1of | ⊢ ( (  I   ↾  𝐵 ) : 𝐵 –1-1-onto→ 𝐵  →  (  I   ↾  𝐵 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 5 | 3 4 | mp1i | ⊢ ( 𝑀  ∈  Mnd  →  (  I   ↾  𝐵 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 7 | 1 6 | mndcl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 8 | 7 | 3expb | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 9 |  | fvresi | ⊢ ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵  →  ( (  I   ↾  𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) )  =  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( (  I   ↾  𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) )  =  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) | 
						
							| 11 |  | fvresi | ⊢ ( 𝑎  ∈  𝐵  →  ( (  I   ↾  𝐵 ) ‘ 𝑎 )  =  𝑎 ) | 
						
							| 12 |  | fvresi | ⊢ ( 𝑏  ∈  𝐵  →  ( (  I   ↾  𝐵 ) ‘ 𝑏 )  =  𝑏 ) | 
						
							| 13 | 11 12 | oveqan12d | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( ( (  I   ↾  𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( (  I   ↾  𝐵 ) ‘ 𝑏 ) )  =  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( (  I   ↾  𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( (  I   ↾  𝐵 ) ‘ 𝑏 ) )  =  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) | 
						
							| 15 | 10 14 | eqtr4d | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( (  I   ↾  𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) )  =  ( ( (  I   ↾  𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( (  I   ↾  𝐵 ) ‘ 𝑏 ) ) ) | 
						
							| 16 | 15 | ralrimivva | ⊢ ( 𝑀  ∈  Mnd  →  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( (  I   ↾  𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) )  =  ( ( (  I   ↾  𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( (  I   ↾  𝐵 ) ‘ 𝑏 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 18 | 1 17 | mndidcl | ⊢ ( 𝑀  ∈  Mnd  →  ( 0g ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 19 |  | fvresi | ⊢ ( ( 0g ‘ 𝑀 )  ∈  𝐵  →  ( (  I   ↾  𝐵 ) ‘ ( 0g ‘ 𝑀 ) )  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝑀  ∈  Mnd  →  ( (  I   ↾  𝐵 ) ‘ ( 0g ‘ 𝑀 ) )  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 21 | 5 16 20 | 3jca | ⊢ ( 𝑀  ∈  Mnd  →  ( (  I   ↾  𝐵 ) : 𝐵 ⟶ 𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( (  I   ↾  𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) )  =  ( ( (  I   ↾  𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( (  I   ↾  𝐵 ) ‘ 𝑏 ) )  ∧  ( (  I   ↾  𝐵 ) ‘ ( 0g ‘ 𝑀 ) )  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 22 | 1 1 6 6 17 17 | ismhm | ⊢ ( (  I   ↾  𝐵 )  ∈  ( 𝑀  MndHom  𝑀 )  ↔  ( ( 𝑀  ∈  Mnd  ∧  𝑀  ∈  Mnd )  ∧  ( (  I   ↾  𝐵 ) : 𝐵 ⟶ 𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( (  I   ↾  𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) )  =  ( ( (  I   ↾  𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( (  I   ↾  𝐵 ) ‘ 𝑏 ) )  ∧  ( (  I   ↾  𝐵 ) ‘ ( 0g ‘ 𝑀 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) | 
						
							| 23 | 2 2 21 22 | syl21anbrc | ⊢ ( 𝑀  ∈  Mnd  →  (  I   ↾  𝐵 )  ∈  ( 𝑀  MndHom  𝑀 ) ) |